Supplementary Information for

Asymmetric microfiber actuators with reciprocal deformation

Yuhang Lu,^{†a} Shiyu Wang^{†a} and Pingan Zhu^{*ab}

^a Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.

^b Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.

[†] These two authors contributed equally to this work.

*Corresponding author. Email: pingazhu@cityu.edu.hk

Energy source	Туре	Advantages	Disadvantages
Hygroscopic	Asymmetric microfiber actuators (this work)	Low-cost, easy-to- obtain, and biocompatible materials; Mass production; Reciprocal deformation.	Relatively slow response and low actuation force; Limited reliability.
Optical	Microribbons ¹	Continuous twisting.	Requiring continuous driving of the optical source.
	Resonant-opto- thermomechanical oscillator ²	Driven by low optical power	Requiring continuous driving of the optical source; Displacement not large enough.
	Structural color actuators ³	Reversible asymmetric shape deformations combined with structural color changes.	Requiring continuous driving of the optical source; Decrease or elimination of deformation with increasing temperature.
Electrical	Multiresponsive microactuator ⁴	Directional locomotion; Maintaining functionality after heavy impact; Excellent movement adaptability.	Requiring continuous driving of the optical/electrical source; Motion speed strongly correlated with laser frequency.
	Electric stimulus- responsive microactuator ⁵	A simple structural design for achieving a large vibration amplitude on a millimetre scale.	Requiring plasmonic thermal energy generated by electrical stimulation; Motion discontinues after a single stimulus trigger.
	Bending actuator	Easy fabrication;	Requiring continuous

 Table S1. Comparisons of various microactuators.

	based on aligned carbon nanotube/polymer composites ⁶	Low voltage; Controllable motion.	driving of the voltage; Only one deformation direction.
Magnetic	Soft µbots based on Pickering emulsions stabilized by magnetic particles ⁷	Higher traction compared to rigid counterparts; Translation on curved surfaces.	Requiring continuous driving of the magnetic source; Lower translation speed compared to rigid µbots; Requiring metal-free environments.
	Sequence- encoded colloidal origami microbot ⁸	Directional motion, steering, and maneuvering.	Requiring external magnetic fields; Necessity of changing sequences to alter functionality.
	Polymer nanocomposite microactuators ⁹	Performance independent of environment; Efficient cumulative release of drugs.	Requiring metal-free environments; Requiring a pulsatile release profile of the magnetic field.
Acoustic	Acoustically controlled helical microrobot ¹⁰	Switchable directionality by simply tuning the acoustic frequency.	Performance easy to be affected; Low propulsion efficiency.
Chemical	Chemically powered microactuator ¹¹	Autonomous Energy source.	Requiring the calculation of the energy carried.

Fig. S1 Surface wettability of diatomite-alginate (superhydrophilic with a contact angle of 0°) and PDMS (hydrophobic with a contact angle of 100.1°).

Fig. S2 Responses of (a) alginate-diatomite and (b) PDMS to humidity changes. Alginate-diatomite exhibits changes in volume in response to humidity variations, whereas PDMS does not.

Supplementary References

- 1. Y. Zhang, Y. Gong, B. Li, R.-M. Ma, Y. Che and J. Zhao, Light-driven continuous twist movements of microribbons, *Small*, 2019, **15**, 1804102.
- 2. S. Pevec and D. Donlagic, Resonant-opto-thermomechanical oscillator (ROTMO): A low-power, large displacement, high-frequency optically driven microactuator, *Small*, 2022, **18**, 2107552.
- A. Belmonte, Y. Y. Ussembayev, T. Bus, I. Nys, K. Neyts and A. P. H. J. Schenning, Structural color actuators: Dual light and temperature responsive micrometer-sized structural color actuators, *Small*, 2020, 16, 2070005
- 4. X. Hui, J. Luo, R. Wang and H. Sun, Multiresponsive microactuator for ultrafast submillimeter robots, *ACS Nano*, 2023, **17**, 6589-6600.
- R. Yun, J. Che, Z. Liu, X. Yan and M. Qi, A novel electric stimulus-responsive micro-actuator for powerful biomimetic motions, *Nanoscale*, 2023, 15, 12933-12943.
- L. Chen, C. Liu, K. Liu, C. Meng, C. Hu, J. Wang and S. Fan, High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites, *ACS Nano*, 2011, 5, 1588-1593.
- Y. Gao, B. Sprinkle, E. Springer, D. W. M. Marr and N. Wu, Rolling of soft microbots with tunable traction, *Sci. Adv.*, 2023, 9, eadg0919.
- 8. K. Han, C. W. Shields, N. M. Diwakar, B. Bharti, G. P. López and O. D. Velev, Sequence-encoded colloidal origami and microbot assemblies from patchy magnetic cubes, *Sci. Adv.*, 2017, **3**, e1701108.
- 9. S. M. Mirvakili, Q. P. Ngo and R. Langer, Polymer nanocomposite microactuators for on-demand chemical release via high-frequency magnetic field excitation, *Nano Lett.*, 2020, **20**, 4816-4822.

- Y. Deng, A. Paskert, Z. Zhang, R. Wittkowski and D. Ahmed, An acoustically controlled helical microrobot, *Sci. Adv.*, 2023, 9, eadh5260.
- 11. R. L. Truby, Chemically fueling new microrobot abilities, Science, 2023, 381, 1152-1153.