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Table S1. Comparisons of various microactuators. 

Energy 

source 
Type Advantages Disadvantages 

Hygroscopic  Asymmetric 

microfiber 

actuators (this 

work) 

Low-cost, easy-to-

obtain, and 

biocompatible 

materials;  

Mass production; 

Reciprocal 

deformation. 

Relatively slow response 

and low actuation force; 

Limited reliability. 

Optical Microribbons1 Continuous twisting. Requiring continuous 

driving of the optical 

source. 

Resonant-opto-

thermomechanical 

oscillator2 

Driven by low optical 

power 

Requiring continuous 

driving of the optical 

source; 

Displacement not large 

enough. 

Structural color 

actuators3 

Reversible asymmetric 

shape deformations 

combined with 

structural color 

changes. 

Requiring continuous 

driving of the optical 

source;  

Decrease or elimination 

of deformation with 

increasing temperature. 

Electrical Multiresponsive 

microactuator4 

Directional 

locomotion; 

Maintaining 

functionality after 

heavy impact; 

Excellent movement 

adaptability. 

Requiring continuous 

driving of the 

optical/electrical source; 

Motion speed strongly 

correlated with laser 

frequency. 

Electric stimulus-

responsive 

microactuator5 

A simple structural 

design for achieving a 

large vibration 

amplitude on a 

millimetre scale. 

Requiring plasmonic 

thermal energy generated 

by electrical stimulation; 

Motion discontinues 

after a single stimulus 

trigger. 

Bending actuator Easy fabrication;  Requiring continuous 
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based on aligned 

carbon 

nanotube/polymer 

composites6 

Low voltage; 

Controllable motion. 

driving of the voltage;  

Only one deformation 

direction. 

Magnetic Soft μbots based 

on Pickering 

emulsions 

stabilized by 

magnetic 

particles7 

Higher traction 

compared to rigid 

counterparts; 

Translation on curved 

surfaces. 

Requiring continuous 

driving of the magnetic 

source;  

Lower translation speed 

compared to rigid μbots;  

Requiring metal-free 

environments. 

Sequence-

encoded colloidal 

origami microbot8 

Directional motion, 

steering, and 

maneuvering. 

Requiring external 

magnetic fields; 

Necessity of changing 

sequences to alter 

functionality. 

Polymer 

nanocomposite 

microactuators9 

Performance 

independent of 

environment;  

Efficient cumulative 

release of drugs. 

Requiring metal-free 

environments;  

Requiring a pulsatile 

release profile of the 

magnetic field. 

Acoustic Acoustically 

controlled helical 

microrobot10 

Switchable 

directionality by 

simply tuning the 

acoustic frequency. 

Performance easy to be 

affected;  

Low propulsion 

efficiency. 

Chemical Chemically 

powered 

microactuator11 

Autonomous Energy 

source. 

Requiring the calculation 

of the energy carried. 
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Fig. S1 Surface wettability of diatomite-alginate (superhydrophilic with a contact angle of 0°) and 

PDMS (hydrophobic with a contact angle of 100.1°). 
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Fig. S2 Responses of (a) alginate-diatomite and (b) PDMS to humidity changes. Alginate-diatomite 

exhibits changes in volume in response to humidity variations, whereas PDMS does not.  
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