Supplementary Information (SI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2025

APPENDIX

Reliability coefficient R²:

$$R^{2} = 1 - \frac{SS_{res}}{SS_{tot}},$$

$$SS_{tot} = \sum_{i} (y_{i} - \underline{y})^{2},$$

$$SS_{res} = \sum_{i} (y_{i} - f_{i})^{2}$$

where y_i is the *i*-th value from the observed dataset, y_i is the mean of observed data, f_i is the predicted value associated with y_i . SS_{tot} is the total sum of squares (proportional to the variance of the data) and SS_{res} is the sum of squares of residuals.

Prediction of x from y:

$$\hat{x}_s = \frac{\bar{y}_s - b_0}{b_1},$$

where \hat{x}_s is the predicted concentration, \bar{y}_s is the mean of m determinations performed on the sample, b_0 is the intercept and b_1 is the slope of calibration curve equation.

$$s_{\hat{x}_S} = \frac{s_e}{b_1} \sqrt{\frac{1}{m} + \frac{1}{n} + \frac{(\bar{y}_S - \bar{y})^2}{b_1^2 \sum (x_i - \bar{x})^2}}$$

where s_e is an estimate of the variance of the measurements, m is the number of measurements per sample, s_e is the number of points of the calibration curve, \bar{y} is the mean of all the y observations (grand mean), s_e is the i-th value from the observed dataset and \bar{x} is the mean of all the x observations (grand mean).

Sum of the mean squares of prediction error:

$$\sum_{j}^{k} (x_j - \hat{x}_j)^2,$$

where x_j is the reference content of *j*-th sample and \hat{x}_j is the value of the predicted content of the respective sample.

1