How are negative ions in an ICPMS formed? – electronic supplement

Andrea Raab¹, Hamid Badiei², Jörg Feldmann¹

¹NAWI Graz, TESLA-Analytical Chemistry, Institute of Chemistry, University of Graz, Universitätsplatz 1, 8010 Graz, Austria

² PerkinElmer Scientific Canada ULC; 501 Rowntree Dairy Road, Woodbridge, Ontario, Canada L4L 8H1

Tables:

Table S1 - Summary of electronic and physical properties of atoms of interest

Table S2 - Summary of some detection limits from a selection of literature for different techniques to determine halogens resp. halogenated compounds

Figures:

Figure S1: Influence of sampling depth on signal intensity and OH-contribution

Figure S2: Influence of auxiliary gas settings on signal intensity and OH-contribution

Figure S3: Influence of cell entrance/exit lens settings on intensity and OH-contribution

Figure S4: Influence of cell rod offset settings on intensity and OH-contribution

Figure S5: Influence of quadrupole rod offset settings on intensity and OH-contribution

Figure S6: Influence of QID voltage settings on signal intensity and OH-contribution

Figure S7: Influence of QID attractor voltage settings on intensity and OH-contribution

Figure S8: Influence of QID box voltage settings on intensity and OH-contribution

Figure S9: Influence of QID entrance voltage settings on intensity and OH-contribution

Figure S10: Influence of QID deflector repellor voltage settings on intensity and OHcontribution

	F	Cl	Br	Ι	0
rel AMU	18.998493	35.45	79.904	126.90447	15.9994
Electronegativity	3.98	3.16	2.96	2.66	3.44
(Pauling)					
1. Ionisation	1681.05	1251.19	1139.86	1008.39	1313.94
energy (kJ/mol)					
Electron affinity	328	349	324.6	295.2	141
(kJ/mol)					
Electron affinity	3.401	3.612	3.363	3.059	1.44
(eV)					
Atomic size (pm)	50 (42)	100 (79)	115 (94)	140 (115)	60 (48)
Ionic radius (pm)	118	167	195	206	126
Pauli radius (pm)	136	181	195	216	140

Table S1: electronic and physical properties of atoms of interest (data taken from https://webbook.nist.gov/chemistry)

Table S2: summary of instrumental detection limits from a selection of the literature for fluorine, chlorine and bromine

	Estimated l.o.d.	Lowest external	untargeted	Literature
	(instrumental)	std		used among
				others
fluorine				
ESI-MS/MS	from 0.05 to 5 µg	20 ng	no	Zhang <i>et al</i> . ¹
	compound / L	compound/L		
GC-MS / ECD	Low pg/m ³	125 ng	(y)	Shoeib <i>et al.</i> ² ,
	sample	compound/L		de Silva <i>et al</i> . ³
CIC	<1 μ g F/L to > 6	5.7 μg F/L ⁴	-	Koch <i>et al.</i> ⁶
	mg F /L	50 mg/L^5		Spaan <i>et al.</i> ⁵
HR-CS-MAS	10 -160 μg F/L		-	Gleisner et
				<i>al.</i> ^{7,8} , Ley <i>et</i>
				al. ^{7,8}
ICPMS/MS	21 (total) 500 µg	0.1 mg F/L ⁹	(y)	Guo <i>et al</i> . ^{9,11} ,
	F/L (speciation)	0.25 mg F/L ¹⁰		Jamari <i>et al</i> . ¹⁰
		0.5 mg F/L ¹¹		Zhu <i>et al</i> . ¹²
		0.06 mg F/L		
HR-ICPMS	5 mg/L	200 mg F/L	-	Bu et al. ¹³
PARCI	20 µg F /L		У	Redeker et
	$7.6 - 21 \ \mu g/L^{14}$			al. ¹⁴
chlorine				
ESI-MS/MS	4-88 μg		У	Spaan <i>et al.</i> ⁵
	compound/kg in			
	sample ⁵			
GC-MS / ECD	Low pg-range	1 μg	У	Xu <i>et al</i> . ¹⁷
	(on-column)	compound/L ¹⁶		
	2.3 ng/g			
	(sample) ¹⁵			
CIC	<0.9 µg Cl/L ¹⁸	11 μg Cl/L ⁴	-	Spaan <i>et al.</i> ⁵
	340 µg Cl/L ⁵	75 μg Cl/L ⁵		
HR-CS-MAS	9.6 µg Cl/L ¹⁹	10 µg Cl/L ¹⁹	-	Abad <i>et al</i> . ¹⁹
ICPMS/MS	0.3 μg - 5	$10 \ \mu g/L^{20}$	(y)	Lajin <i>et al</i> . ^{20,}
	Cl/L ^{20,21}			21
	$1 \mu g/L^{22}$			Klencsar et
	$<5 \ \mu g \ Cl/L^{21}$			al. ²²
HR-ICPMS	3 µg/L ¹³	50 μg Cl/L	-	Bu <i>et al</i> . ^{13,23}
PARCI	7 μg Cl/L ^{14,24}	$\sim 200 \ \mu g/L^{14}$	У	Redeker et
	25-57 μg/L ¹⁴			al. ¹⁴
				Lesniewski <i>et</i>

				al. ²⁴
bromine				
APPI-MS/MS	< 30 pg (on-	35 µg	no	Lagalante et
	column)	compound/L ²⁵³		$al.^{23}$
	$ESI \sim 0-0.5 \ \mu g/kg$			
	sample ⁵			
GC-MS	0.04 – 85 pg (on-		у	Xu <i>et al</i> . ¹⁷
	column)			
CIC	$2.7 - 7.1 \ \mu g/L^{18}$	250 μg/L ⁵	-	Spaan <i>et al</i> . ⁵
	$< 250 \ \mu g/L^{5}$			
HR-CS-MAS	160 µg/L ²⁶		-	Gunduz et
				al. ²⁴
ICPMS/MS	0.4 µg Br/L ²²	10 µg Br/L ²⁰	у	Lajin <i>et</i>
	0.8 ²⁰ -15 μg			$al.^{20,21}$
	Br/L^{21}			Klencsar et
				al. ²²
HR-ICPMS	0.08 µg/L	5 μg/L	-	Bu <i>et al</i> . ^{13,23}

Influence of sampling depth on signal intensity and OH-contribution

Figure S1: influence of sampling depth on intensity; A) intensities of m/z 18 and 19 in blank and 10 mg Hal/L standard solution; B) ratios of 17/16 and 19/18 at reduced detector voltage and calculated minimum and maximum OH⁻ contribution to m/z 19 in blank solution; C) standard/blank ratios; D) signal intensity (in cps/mM Hal); all other instrument settings were static (see Table 1)

Influence of auxiliary gas settings on signal intensity and OH-contribution

Figure S2: influence of auxiliary gas flow on intensity; A) intensities of m/z 18 and 19 in blank and 10 mg Hal/L standard solution; B) ratios of 17/16 and 19/18 at reduced detector voltage and calculated minimum and maximum OH⁻ contribution to m/z 19 in blank solution; C) standard/blank ratios; D) signal intensity (in cps/mM Hal); all other instrument settings were static (see Table 1)

Influence of cell entrance/exit lens settings on signal intensity and OHcontribution

Figure S3: influence of cell entrance/exit voltage on intensity; A) intensities of m/z 18 and 19 in blank and 10 mg Hal/L standard solution; B) ratios of 17/16 and 19/18 at reduced detector voltage and calculated minimum and maximum OH⁻ contribution to m/z 19 in blank solution; C) standard/blank ratios; D) signal intensity (in cps/mM Hal); all other instrument settings were static (see Table 1)

Influence of cell rod offset settings on signal intensity and OH-contribution

Figure S4: influence of cell rod offset voltage on intensity; A) intensities of m/z 18 and 19 in blank and 10 mg Hal/L standard solution; B) ratios of 17/16 and 19/18 at reduced detector voltage and calculated minimum and maximum OH⁻ contribution to m/z 19 in blank solution; C) standard/blank ratios; D) signal intensity (in cps/mM Hal); all other instrument settings were static (see Table 1)

Influence of quadrupole rod offset settings on signal intensity and OHcontribution

Figure S5: influence of quadrupole rod offset voltage on intensity; A) intensities of m/z 18 and 19 in blank and 10 mg Hal/L standard solution; B) ratios of 17/16 and 19/18 at reduced detector voltage and calculated minimum and maximum OH⁻ contribution to m/z 19 in blank solution; C) standard/blank ratios; D) signal intensity (in cps/mM Hal); all other instrument settings were static (see Table 1)

Influence of QID voltage settings on signal intensity and OH-contribution

Figure S6: A) intensity at various QID attractor, box and entrance voltage settings (ratio attractor: box 1: 0.66, attractor: entrance 1: 0.37) versus QID deflector repellor voltage; B) ratio 17/16 and 19/18 and calculated % OH contribution at signal maximum at the indicated QID attractor voltage; C) intensity and standard / blank ratio at signal maximum for m/z 19; D) intensity and standard / blank ratio at signal maximum for m/z 79

Figure S7: influence of QID attractor voltage on intensity; A) intensities of m/z 18 and 19 in blank and 10 mg Hal/L standard solution; B) ratios of 17/16 and 19/18 at reduced detector voltage and calculated minimum and maximum OH⁻ contribution to m/z 19 in blank solution; C) standard/blank ratios; D) signal intensity (in cps/mM Hal); all other instrument settings were static (see Table 1)

Influence of QID box voltage settings on signal intensity and OH-contribution

Figure S8: influence of QID box voltage on intensity; A) intensities of m/z 18 and 19 in blank and 10 mg Hal/L standard solution; B) ratios of 17/16 and 19/18 at reduced detector voltage and calculated minimum and maximum OH⁻ contribution to m/z 19 in blank solution; C) standard/blank ratios; D) signal intensity (in cps/mM Hal); all other instrument settings were static (see Table 1)

Influence of QID entrance voltage settings on signal intensity and OHcontribution

Figure S9: influence of QID entrance voltage on intensity; A) intensities of m/z 18 and 19 in blank and 10 mg Hal/L standard solution; B) ratios of 17/16 and 19/18 at reduced detector voltage and calculated minimum and maximum OH⁻ contribution to m/z 19 in blank solution; C) standard/blank ratios; D) signal intensity (in cps/mM Hal); all other instrument settings were static (see Table 1)

Influence of QID deflector repellor voltage settings on signal intensity and OHcontribution

Figure S10: influence of QID deflector repellor voltage on intensity; A) intensities of m/z 18 and 19 in blank and 10 mg Hal/L standard solution; B) ratios of 17/16 and 19/18 at reduced detector voltage and calculated minimum and maximum OH⁻ contribution to m/z 19 in blank solution; C) standard/blank ratios; D) signal intensity (in cps/mM Hal); all other instrument settings were static (see Table 1)

References

- 1 B. Zhang, Y. He, G. Yang, B. Chen, Y. Yao, H. Sun, K. Kannan and T. Zhang, *Environ. Sci. Technol.*, 2021.
- 2 M. Shoeib, T. Harner and P. Vlahos, Environ. Sci. Technol., 2006, 40, 7577–7583.
- 3 A. O. de Silva and S. A. Mabury, *Environ. Sci. Technol.*, 2006, **40**, 2903–2909.
- 4 Y. Miyake, M. Kato and K. Urano, J. Chrom. A, 2007, 1139, 63–69.
- 5 K. M. Spaan, B. Yuan, M. M. Plassmann, J. P. Benskin and C. A. de Wit, *Environ. Sci. Technol.*, 2023, **57**, 9309–9320.
- 6 A. Koch, R. Aro, T. Wang and L. W. Yeung, *TrAC*, 2020, **123**, 115423.
- 7 H. Gleisner, J. W. Einax, S. Morés, B. Welz and E. Carasek, *J. Pharm. Biomed. Anal.*, 2011, 54, 1040–1046.
- 8 P. Ley, M. Sturm, T. A. Ternes and B. Meermann, *Anal. Bioanal. Chem.*, 2017, **409**, 6949–6958.
- 9 W. Guo, L. Jin, S. Hu and Q. Guo, J. Agric. Food Chem., 2017, 65, 3406–3412.
- 10 N. L. A. Jamari, J. F. Dohmann, A. Raab, E. M. Krupp and J. Feldmann, *J. Anal. At. Spectrom.*, 2017, **32**, 942–950.

- 11 N. L. A. Jamari, J. F. Dohmann, A. Raab, E. M. Krupp and J. Feldmann, *Anal. Chim. Acta*, 2019, **1053**, 22–31.
- 12 Y. Zhu, K. Nakano and Y. Shikamori, Anal. Sci., 2017, 33, 1279–1284.
- 13 X. Bu, T. Wang and G. Hall, J. Anal. At. Spectrom., 2003, 18, 1443.
- 14 F. A. Redeker, J. E. Lesniewski, G. Hahm, W. P. McMahon and K. Jorabchi, *Anal. Chem.*, 2022, **94**, 11865–11872.
- 15 M. Carballo, M. Arbelo, F. Esperón, M. Mendez, A. de La Torre and M. J. Muñoz, *Enviro. Toxicol.*, 2008, **23**, 200–210.
- 16 B. M. J. Herbert, C. J. Halsall, L. Fitzpatrick, S. Villa, K. C. Jones and G. O. Thomas, *Chemosphere*, 2004, **56**, 227–235.
- 17 W. Xu, X. Wang and Z. Cai, Anal. Chim. Acta, 2013, 790, 1–13.
- 18 A. Kinani, H. Sa Lhi, S. Bouchonnet and S. Kinani, J. Chrom. A, 2018, 1539, 41–52.
- 19 C. Abad, S. Mimus, S. Recknagel, N. Jakubowski, U. Panne, H. Becker-Ross and M.-D. Huang, *Anal. Methods*, 2021, **13**, 3724–3730.
- 20 B. Lajin and W. Goessler, Anal. Chem., 2020, 92, 9156–9163.
- 21 B. Lajin, S. Braeuer, J. Borovička and W. Goessler, *Chemosphere*, 2021, 281, 130819.
- 22 B. Klencsár, E. Bolea-Fernandez, M. R. Flórez, L. Balcaen, F. Cuyckens, F. Lynen and F. Vanhaecke, *J. Pharm. Biomed. Anal.*, 2016, **124**, 112–119.
- 23 M. A. R. Buzalaf, ed., *Fluoride and the oral environment*, Karger, Basel Switzerland, New York, 2011, vol. 22.
- 24 J. E. Lesniewski, W. P. McMahon, K. Zheng, H. Wang, H. Badiei and K. Jorabchi, *J. Anal. At. Spectrom.*, 2017, **32**, 1757–1765.
- 25 A. F. Lagalante and T. D. Oswald, Anal. Bioanal. Chem., 2008, 391, 2249–2256.
- 26 S. Gunduz and S. Akman, Microchem. J., 2014, 116, 1-6.