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1. Dimensions of the mimicked microvasculature 

The dimensions of the mimicked microvasculature, namely linear T-junction channels, linear Y-

junction channels, and bifurcating honeycomb microchannels, are illustrated in Fig. S1. The linear 

channels presented two types of junctions and three different widths, namely 20 µm, 40 µm and 60 

µm. While the honeycomb bifurcation network had a constant width (30 µm) and varying bifurcation 

angles (30, 60 and 90°).

(A) (B)

(C)

Fig. S1 Dimensions of the mimicked microvasculature. (A) T-junction single microchannel; (B) Y-
junction single microchannel; (C) Honeycomb-like bifurcation microvascular channel.
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2. Master fabrication

The microvasculature designs were created using Fusion 360 and printed on a mylar sheet to 

fabricate a photomask (made by CAD/Art Services, Inc.). A SU-8 negative photoresist 2050 (Kayaku 

Advanced Materials, Inc.) layer with a 40 m thickness was coated on 4-inch silicon wafers (Ultra-

flat single-side polished silicon substrates, 1000 m thickness, Alpha Nanotech Inc.) by a spin coater 

(WS-650-23 B spin coater, Laurell Technologies Corporation). The silicon wafer, photomask 

alignment and UV exposure were performed using a mask aligner system (OAI, Hydralign Series 200). 

Coating the photoresist layer was fulfilled using a spin coater at 3600 rpm. The soft baking of the 

spin-coated silicon wafer was done at 65 and 95 C for 3 and 6 min, respectively. Then, the photomask 

was placed onto the photoresist spin-coated silicon wafer and UV-exposed for 55 seconds. The UV 

light intensity was 3.1 mWcm-2. After UV exposure, the post baking process was done at 65 and 95°C 

for 1 and 6 min, respectively. The unexposed surface of the photoresist layer was then removed by 

dissolving it with SU-8 developer (Kayaku Advanced Materials, Inc.). The developing time was 1 min. 

The thickness (40 3 m) of the developed photoresist layer was measured by a profilometer (The 

Bruker Dektak XT contact profilometer, Bruker Inc.). Finally, a silanization surface treatment was 

done using chlorotrimethylsilane for 24 h to improve the bonding in the interface between mineral 

and organic components.1 The schematic of the masters’ fabrication procedure and PDMS replication 

of the mimicked microvasculature are shown in Fig. S2.

3. Polydimethylsiloxane (PDMS) replication moulding

Polydimethylsiloxane (PDMS, Sylgard Silicone elastomer 184, Dow Corning Corp. Midland, 

MI.) and curing agent were mixed in a 10:1 ratio (weight by weight). PDMS mixture was poured onto 

the fabricated master and then degassed to remove the air bubbles. The curing process was carried 

out overnight at 60 °C in an oven. After curing, the PDMS with microchannels networks was removed 

from the silicon wafer, and the holes for inlets and outlets were punched (1.5mm diameter punctures 

were used). The PDMS was treated using a plasma cleaner (PDC-32G, Harrick plasma) to form an 

https://www.sciencedirect.com/topics/chemistry/curing-agent
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irreversible bond, and then a glass cover slip was used to seal the microfluidic channels. The locked 

microfluidic devices were then used for experiments.

Fig. S2 Schematic of the masters’ fabrication and the replication process of the microvasculature 
devices.

4. Measurement of the viscosity and surface tension of the synthesized fluids

The working fluids were prepared according to the procedure mentioned in the work of Brookshier 

and Trabell.2 The xanthan gum-based haematocrit equivalent has also been used in several other 

studies2, 3 as a synthetic replacement of haematocrit equivalent fluids for PDMS-based microfluidics 

studies. To demonstrate their similarity with human blood characteristics, their viscosity (Table S1), 

surface tension (Table S2) and contact angle were measured (Table S3). The viscosities of the 

working fluids were measured and reported at the shear rate of 120 s-1 and 20C by a rheometer 

(Modular Compact Rheometer, MCR 302e, Anton Paar). The detailed results are shown in Fig. S3.
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Table S1. The viscosity of the working fluids versus the viscosity of real blood was reported in the 
work of  Brookshier and Trabell.2

Fluid Viscosity (cp) Human 
Blood*4

Working Fluid with equivalent 
haematocrit concentration at 

20C
Plasma at 37 C (0% haematocrit concentration) 1.1 1.0
Whole blood with 20% haematocrit concentration 2.1 2.5
Whole blood with 46% haematocrit concentration 5.7 6.0

*The viscosities of the working fluids were reported at the shear rate of 120 s-1.

Fig. S3 The obtained data during viscosity measurement of working fluids and porcine blood (N=3).

The surface tension and contact angle were measured by Ramé-hart Model 90 Goniometer / 

Tensiometer (Ramé-hart Instrument co.).
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Table S2. The surface tension of human blood at different haematocrit equivalent versus the surface 
tension of working fluids.

Fluid surface tension (mN/m) Human 
blood5, 6

Working fluid with equivalent 
haematocrit concentration at 

20C
Plasma (0% haematocrit concentration) 52 56.95
Whole blood with 46% haematocrit concentration 54 48.97

The contact angle of the synthesized fluids versus the contact angle of the real blood.

Table S3. The surface tension and contact angle of the working fluids and porcine blood (N=10).

Water – Glycerol Water Synthetic blood Porcine plasma Porcine 
46% hematocrit

Surface Tension


Dyne/cm 
(mN/m) 56.95 48.97 53.24 47.26

Contact angle on 
the glass slide

 17.00 35.50 24.50 20.90

Contact angle on 
PDMS

 108.60 90.30 70.00 98.50

5. Microscopy images

The microscopy image panel for varying flow patterns for all tested air-to-liquid flow ratios, ranging 

from 10 to 100, for both junction types and all fluids, are presented in Supplementary Information 

Figs. S4 to S6.
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Fig. S4. Microscopic images of the flow patterns of air bubbles and liquid slugs in T-junction and Y-junction of 20 µm channel width across 
different air-to-liquid ratios for the water and synthetic blood.



8

Fig. S5. Microscopic images of the flow patterns of air bubbles and liquid slugs in T-junction and Y-junction of 40 µm channel width across 
different air-to-liquid ratios for the water and synthetic blood.
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Fig. S6. Microscopic images of the flow patterns of air bubbles and liquid slugs in T-junction and Y-junction of 60 µm channel width across 
different air-to-liquid ratios for the water and synthetic blood. 
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6. Variation of the fluid pressure drop across the channel.

The variation of the pressure drop in channels with both T and Y-junctions for water and synthetic 

blood for different air-to-liquid ratios is presented in Fig. S7. During the monitoring of the pressure 

drops for an extended period (which was 140, 50, and 30 min for the 20, 40 and 60 µm channels, 

respectively), two pressure ranges were observed, namely (i) a highly dynamic region, at the start of 

the injection of the liquid and air, where the hydraulic pressure raised considerably, as shown in Fig. 

S7, and then (ii) a stabilized region, during which the pressure values reached constant levels, as 

presented in Fig. S7 (and further detailed in Supplementary Information, Figs. S8 to S13). In the 

highly dynamic region, the pressure values were up to twice the values compared to the constant 

region (Fig. S7). In the stabilized region of the pressure drop, which is the focus of the present study, 

two different distributions of bubble and total slug lengths were observed: (i) a more uniform-sized 

total slug and (ii) a non-uniform total slug sizes. Figs. S4 to S6 and Movie. S2 show the microscopic 

images of these two size distributions in corresponding air-to-liquid ratios. For uniformly sized total 

slugs, the air bubbles and liquid slugs traversed harmonically along the channel without a significant 

difference in the length of the moving bubbles or liquid slugs (referred to here as harmonic motion). 

This pattern was observed in most air-to-liquid ratios for flows in 20 µm channels. For 40 and 60 µm 

channels, the harmonic motion of the bubble occurred just in a few instances when the air-to-liquid 

ratios were lower. For higher air-to-liquid ratios in the Y-junction, non-uniform distributed lengths 

of the total slugs were observed. 

Fig. S7 presents general trends of the pressure drop measured for varying air-to-liquid ratios, derived 

from independent experiments (1700 n 44000, and 3500 n 198000 measurements, for the 

water and synthetic blood, respectively). High variations (longer vertical lines for standard 

deviations in Fig. S7) correspond to irregular flow patterns resulting from the resistance developed 

due to air bubble entrapment in the channels, which is phenomenologically similar to gas embolism 

events. Conversely, smaller variations correspond to more uniform flow patterns and predictable 
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characteristics of the total slugs, i.e., successive displacement of air bubbles and liquid phases without 

considerable stagnation. The bubbles resulting from this seamless displacement are denominated as 

Taylor bubbles (or continuously displacing bubbles).7 The pressure drop in a straight channel with 

Taylor flow is a function of the length of liquid slugs, bubble lengths, their velocity, channel width, 

and fluid viscosity.8 Therefore, to interpret the experimental results of the pressure drop, factoring 

in the variation of the mentioned parameters is essential.9

A comparison of the graphs in Fig. S7 suggests that the effect of fluid viscosity has a considerably 

higher impact on the pressure drop variations than other parameters, such as the fluid flow velocity, 

air-to-liquid ratio, flow pattern, and channel width. The channels accommodating fluid flows 

characterized by higher viscosity exhibit higher pressure drops than the ones with a lower viscosity. 

For instance, in T-junctions, the higher viscosity of the synthetic blood compared with the water 

viscosity translates into a generally higher pressure drop (Fig. S7B) compared to that for water (Fig. 

S7A). A similar pattern was observed with Y-junctions, as shown in Fig. S7C and Fig. S7D.

Apart from the liquid viscosity, the hydraulic resistance of the channels with T-junction affects 

considerably more the pressure drop compared to those with Y-junction (Fig. S7A and S7B). 

Furthermore, in T junctions with 20 µm channel width exhibits the highest hydraulic resistance, 

followed by the channels with 40 µm and 60 µm widths, and consequently, the highest pressure drop. 

An increase in the channel width decreased the pressure drop, and consequently, the 40 and 60 µm 

channels have a lower pressure drop than the 20 µm channels. As a result, the movement of the air 

bubble in 20 µm channels is particularly challenging, with the highest propensity for halting. The 

application of Hagen–Poiseuille relationship (Eq. 1),10 stating that an increase in the liquid viscosity 

increases the air pressure (or pressure drop), can be observed by comparing Fig. S7A and S7B. The 

findings are in line with previously published results.9 The Hagen–Poiseuille correlation is further 

detailed in Eq. 1:
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∆𝑃 =
128 × 𝜇 × 𝐿 × 𝑄

𝜋 × 𝑑4
𝐻

                                                                                                                                           𝐸𝑞. 1

Where P represents pressure drop (Pa), µ denotes the dynamic viscosity (kg m s-1), L indicates the 

length of the channel (m), Q is the fluid flowrate (m3 s-1), and finally dH is the hydraulic diameter of 

the channel (m). 

Similar to T-junctions, Y-junctions also presented a higher hydraulic pressure for the synthetic blood 

than water. However, unlike the T-junctions, Y-junctions, which are the default geometry in the 

vascular system, presented a different trend with respect to the pressure drop. The channel with 

larger widths (namely 40 µm) showed a higher pressure drop compared to the lower channel widths 

(20 µm), suggesting a different and unpredictable behaviour of flow in the presence of gas bubbles 

dependent on the junction type. In a similar study, variations in pressure drops within a channel with 

T-junction were examined.11  The study found that a higher pressure drop can be as a result of 

increasing the channel width or by increasing the fluid flow rate, which, in turn, affects the flow 

pattern of bubbles within the channel. In our study, while Eq. 1 clearly demonstrates the direct 

impact of viscosity (µ) and flow rate (Q) (Fig S7A and S7B), another factor not considered in the 

Hagen–Poiseuille relation is the movement patterns of the bubbles in channel of different width. This 

can be attributed to the unpredictable behavior in pressure drop with 40 µm channels observed to 

be higher than in the 20 µm channels. Following the above observation of anomaly, it is obvious to 

expect the pressure drop to be highest in 60 µm channel with Y-junctions among the studied widths, 

however, it was the not the case. The possible explanation is in 60 µm channels, the flow pattern was 

stratified, and the layer of the gas moved parallelly along the layer of the liquid for both water and 

the synthetic fluid. As a result, only a linear variation of the air pressure for different air-to-liquid 

ratios was observed for Y-junctions (green lines in Fig. S7C and S7D). This observation emphasizes 

on the fact that was not earlier studied with invitro experiments, but detailed here stating that the 

patterns of bubble movement could be critical for the pressure drop.
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Fig. S7 Graphs of the measured air pressure for different air-to-liquid ratios for different viscosity 
and channel junctions. A. water and T-junction channel; B. the synthetic blood and T-junction 
channel; C. water and Y-junction channel; D. the synthetic blood and Y-junction channel. The standard 
deviation represents the pressure variation of the injected airflow measured by the pressure sensor, 
with larger values representing larger fluctuations in the pressure of the air.
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Fig. S8 Pressure evolution inside channels with 20 µm width for water. A. T-junction, B. Y-junction.

Fig. S9 Pressure evolution inside channels with 40 µm width for water. A. T-junction, B. Y-junction.

Fig. S10 Pressure evolution inside channels with 60 µm width for water. A. T-junction, B. Y-junction.
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Fig. S11 Pressure evolution inside channels with 20 µm width for the synthetic blood. A. T-junction, 
B. Y-junction.

Fig. S12 Pressure evolution inside channels with 40 µm width for the synthetic blood. A. T-junction, 
B. Y-junction.

Fig. S13 Pressure evolution inside channels with 60 µm width for the synthetic blood. A. T-junction, 
B. Y-junction.
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7. Length of the liquid slug and histogram of the bubble length in T and Y-junctions

A representative panel of the length of the liquid slug and histogram of the bubble length observed 

with different flow ratios and equivalent concentrations of haematocrit for both T-junction and Y-

junction is shown below. 

Fig. S14 Length of the liquid slugs in T-junction and Y-junction channels across different air-to-liquid 
ratios for the water and synthetic blood.
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8. Distribution of bubble lengths

Fig. S15 Histograms of the bubble length in T- and Y-junctions channels for the selected ratios of 20, 50, and 80.
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Fig. S16 Histograms of the bubble length in T-junction channels across different air-to-liquid ratios for the water.
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Fig. S17 Histograms of the bubble length in Y-junction channels across different air-to-liquid ratios for the water.
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Fig. S18 Histograms of the bubble length in T-junction and Y-junction channels with 20 µm width across different air-to-liquid ratios for 
the synthetic blood.
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Fig. S19 Histograms of the bubble length in T-junction and Y-junction channels with 40 µm width across different air-to-liquid ratios for 
the synthetic blood.
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Fig. S20 Histograms of the bubble length in T-junction and Y-junction channels with 60 µm width across different air-to-liquid ratios for 
the synthetic blood.
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Fig. S21 Bivariate histograms depicts the relationship between bubble volume and air pressure at various air-to-liquid ratios in T- and Y-
junction channels with water as the working fluid.
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Fig. S22 Bivariate histograms depicts the relationship between bubble volume and air pressure at various air-to-liquid ratios in T- and Y-
junction channels with synthetic blood as the working fluid.
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9. Quantitative prediction of dimensionless numbers in extended channel widths

Considering the available dataset of dimensionless numbers obtained at various air-to-liquid ratios 

and channel widths, the development of a predictive function for estimating dimensionless numbers 

in larger channels proves to be a valuable tool for assessing the potential for gas embolism. This 

function relates a dimensionless number, such as Weber, Capillary, or the inverse form of Euler 

numbers, as a dependent variable to two independent variables: the air-to-liquid ratio and channel 

width. Using the curve fitting toolbox in MATLAB software, a fourth-order polynomial function 

demonstrates a suitable fit to the experimental data of these dimensionless numbers. This fit is 

assessed with respect to the coefficient of determination, denoted as R2.

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 𝑁𝑢𝑚𝑏𝑒𝑟 = 𝐶4𝑅4 + 𝐶3𝑅3 + 𝐶2𝑅2 + 𝐶1𝑅 + 𝐶0                                                       𝐸𝑞. 2

                                                    𝐶𝑖 = 𝐴𝑖1𝑑𝐻 + 𝐴𝑖2                                                                                      𝐸𝑞. 3

where R is representative of the air-to-liquid ratio, while Ci (including C4, C3, C2, C1, and C0) signifies 

the coefficients of a fourth-order polynomial. These coefficients are intricately linked to the channel 

width. Linear regression analysis revealed a perfect match between Ci and channel width using 

experimental data. Ai1 and Ai2 are responsible for denoting the first and second coefficients in this 

linear equation, respectively. Table S4 in the supplementary information provides the coefficients for 

the proposed functions associated with various dimensionless numbers. Furthermore, the MATLAB 

code included in the supplementary information was employed to perform the regression and extract 

the aforementioned coefficients.
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Table S4. Coefficients of the dimensionless numbers relationships
C4 C3 C2 C1 C0

Ci=Ai1dH+Ai2 Ci=Ai1dH+Ai2 Ci=Ai1dH+Ai2 Ci=Ai1dH+Ai2 Ci=Ai1dH+Ai2

A41 1.99E-11 A31 -3.57E-09 A21 2.10E-07 A11 -1.30E-06 A01 2.18E-06Capillary 
Number A42 -1.54E-09 A32 2.60E-07 A22 -1.37E-05 A12 2.31E-04 A02 2.08E-05

A41 -4.63E-11 A31 7.81E-09 A21 -2.29E-07 A11 3.70E-06 A01 -6.41E-06(Euler 
Number)-1 A42 -4.72E-11 A32 7.52E-09 A22 -3.21E-06 A12 4.83E-05 A02 1.39E-04

A41 -3.85E-13 A31 3.85E-11 A21 1.85E-09 A11 -3.53E-08 A01 8.61E-08

W
at

er

Weber 
Number A42 -1.78E-12 A32 9.13E-10 A22 -1.23E-07 A12 2.13E-06 A02 -1.30E-06

A41 -4.72E-11 A31 1.12E-08 A21 -8.59E-07 A11 2.29E-05 A01 2.30E-05Capillary 
Number A42 -3.18E-11 A32 2.74E-08 A22 -5.41E-06 A12 3.46E-04 A02 -4.01E-04

A41 -2.18E-12 A31 5.40E-10 A21 -4.44E-08 A11 1.30E-06 A01 5.18E-07(Euler 
Number)-1 A42 3.69E-11 A32 -8.57E-09 A22 6.31E-07 A12 -1.47E-05 A02 -1.40E-05

A41 -1.37E-13 A31 3.44E-11 A21 -2.85E-09 A11 8.32E-08 A01 2.89E-08

Sy
nt

he
tic

 b
lo

od

Weber 
Number A42 2.13E-12 A32 -5.28E-10 A22 4.16E-08 A12 -1.08E-06 A02 6.59E-07
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10. MATLAB code employed to perform the regression and extract the aforementioned 

coefficients

clc

% Set the font name and size
font_name = 'Cambria'; % Change to your desired font name
font_size = 18;      % Change to your desired font size
% Set the font name and size for the axis numbers (tick labels)
font_name_axis = 'Cambria'; % Change to your desired font name
font_size_axis = 24;      % Change to your desired font size
% Get the current axes handle
ax = gca;
% Set the font and font size for the current figure
set(gca, 'FontName', font_name, 'FontSize', font_size);

TW_ratio20 = [0 20 30 40 50 60 70 80];
TW_ratio40 = [0 10 20 30 40 50 60 70 80 90];
TW_ratio60 = [0 10 20 30 40 50 60 70 80 90];

TW_Weber20 = [0 3.22685E-06 5.72623E-06 7.40115E-06 1.20787E-05 2.93717E-05 3.68791E-05 3.63675E-05];
TW_Weber40 = [0 1.70012E-05 1.55141E-05 3.67985E-05 3.85376E-05 9.90227E-05 0.000178512 0.000209886 
0.000289352 0.00037723];
TW_Weber60 = [0 6.80791E-06 2.87896E-05 6.57978E-05 8.95962E-05 0.000257327 0.000346525 0.000482736 
0.00052912 0.000613177];

TW_Cap20 = [0 0.001362582 0.00181513 0.002063587 0.002636228 0.00411091 0.004606417 0.004574353];
TW_Cap40 = [0 0.002564671 0.002449934 0.003773169 0.003861304 0.006189547 0.008310457 0.00901121 
0.010580463 0.012080768];
TW_Cap60 = [0 0.001485315 0.003054424 0.004617612 0.005388356 0.00913176 0.010596904 0.012507382 
0.013094498 0.014096275];

TW_Eu20=[0 0.000186491 0.000387488 0.000446536 0.000848976 0.002112639 0.003217654 0.002935698];
TW_Eu40=[0 0.001012739 0.00092158 0.002902816 0.003002219 0.006769105 0.013025753 0.014878185 
0.026067682 0.030758378];
TW_Eu60=[0 0.000430066 0.001830392 0.003950511 0.005316743 0.013770466 0.021797004 0.028642512 
0.042097741 0.045405265];

T46p_ratio20 = [0 30 40 50 60 70 80 90 100];
T46p_ratio40 = [0 10 20 30 40 50 60 70 80 90 100];
T46p_ratio60 = [0 10 20 30 40 50 60 70 80 90 100];

T46p_Weber20 = [0 6.04884E-06 8.19823E-06 5.01072E-06 4.9535E-06 4.27728E-06 5.28102E-06 4.45698E-06 
4.36609E-06];
T46p_Weber40 = [0 1.80509E-05 1.99552E-05 2.46678E-05 2.37694E-05 1.58328E-05 1.59051E-05 1.63199E-05 
1.49535E-05 1.36293E-05 1.38292E-05];
T46p_Weber60 = [0 3.22782E-05 3.50218E-05 3.98565E-05 3.28944E-05 2.23126E-05 2.42658E-05 2.19764E-05 
2.27132E-05 2.38509E-05 2.82211E-05];

T46p_Cap20 = [0 0.008724139 0.010156557 0.007940293 0.007894828 0.007336184 0.008151647 0.007488705 
0.00741196];
T46p_Cap40 = [0 0.012358191 0.012993705 0.014446748 0.014181244 0.011574022 0.011600396 0.01175071 
0.011248044 0.010738446 0.010816933];
T46p_Cap60 = [0 0.015124441 0.015754115 0.0168064 0.015268132 0.012574758 0.013113607 0.012479676 
0.012687162 0.013001022 0.014142026];

T46p_Eu20=[0 0.000112542 0.000153802 0.000100057 0.000103018 9.28805E-05 0.000108086 8.51238E-05 
9.15146E-05];
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T46p_Eu40=[0 0.000310541 0.000383635 0.000492954 0.000471466 0.000317479 0.000327357 0.000326358 
0.000282773 0.000263297 0.000268691];
T46p_Eu60=[0 0.000513807 0.000577667 0.000618211 0.000553374 0.000391736 0.000419995 0.000375876 
0.000379061 0.000380158 0.000424233];

% Data for A = 20
R_20 = TW_ratio20;%
W_20 =TW_Cap20;%T46p_Cap20;%

% Data for A = 40
R_40 = TW_ratio40;%
W_40 =TW_Cap40;%T46p_Cap40;%

% Data for A = 60
R_60 = TW_ratio60;%
W_60 = TW_Cap60;%Weber60;%T46p_Cap60;%

% Define the input data for three values of A
A_values = [20, 40, 60];

% Perform linear regression for each set of data
coefficients_20 = polyfit(R_20, W_20, 4);
coefficients_40 = polyfit(R_40, W_40, 4);
coefficients_60 = polyfit(R_60, W_60, 4);
%==========================================================================
%Building coefficient matrix

COEFF=[coefficients_20;coefficients_40;coefficients_60];

COEFF_A=polyfit(A_values,COEFF(:,1),1);
COEFF_B=polyfit(A_values,COEFF(:,2),1);
COEFF_C=polyfit(A_values,COEFF(:,3),1);
COEFF_D=polyfit(A_values,COEFF(:,4),1);
COEFF_E=polyfit(A_values,COEFF(:,5),1);

% Data for A = 20
% Fit a fourth-order polynomial to the data
p_20 = polyfit(R_20, W_20, 4);
% Create a finer grid of R values for the fitted curve
R_fit = linspace(min(R_20), max(R_20), 1000);
% Evaluate the polynomial at the finer grid of R values
W_fit = polyval(p_20, R_fit);
% Plot the original data and the fitted curve
plot(R_20, W_20, 'r^', 'MarkerFaceColor', 'red', 'DisplayName', 'Experimental data for 20 um','MarkerSize', 10);
hold on
plot(R_fit, W_fit, '-r','DisplayName', 'Fitted curve for 20 um','LineWidth', 2);
grid on;

% Data for A = 40
% Fit a fourth-order polynomial to the data
p_40 = polyfit(R_40, W_40, 4);
% Create a finer grid of R values for the fitted curve
R_fit = linspace(min(R_40), max(R_40), 1000);
% Evaluate the polynomial at the finer grid of R values
W_fit = polyval(p_40, R_fit);
% Plot the original data and the fitted curve
plot(R_40, W_40, 'bs', 'MarkerFaceColor', 'blue', 'DisplayName', 'Experimental data for 40 um','MarkerSize', 10);
plot(R_fit, W_fit, '-b','DisplayName', 'Fitted curve for 40 um','LineWidth',2);

% Data for A = 60
% Fit a fourth-order polynomial to the data
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p_60 = polyfit(R_60, W_60, 4);
% Create a finer grid of R values for the fitted curve
R_fit = linspace(min(R_60), max(R_60), 1000);
% Evaluate the polynomial at the finer grid of R values
W_fit = polyval(p_60, R_fit);
% Plot the original data and the fitted curve
plot(R_60, W_60, 'go', 'MarkerFaceColor', 'green', 'DisplayName', 'Experimental data for 60 um','MarkerSize', 10);
plot(R_fit, W_fit, 'g', 'DisplayName', 'Fitted Curve for 60 um','LineWidth',2);

A=200:300:2000;
R=0:1:100;

for i=1:length(A)
    for j=1:length(R)
We(j)=((COEFF_A(1)*A(i)+COEFF_A(2))*R(j)^4)+((COEFF_B(1)*A(i)+COEFF_B(2))*R(j)^3)+((COEFF_C(1)*A(i)+COEFF_C
(2))*R(j)^2)+((COEFF_D(1)*A(i)+COEFF_D(2))*R(j)^1)+((COEFF_E(1)*A(i)+COEFF_E(2)));
    end
plot(R,We,'LineWidth', 2)
    hold on
end

% Calculate R2 for A = 20
W_fit_20 = polyval(p_20, R_20);
R2_20 = 1 - sum((W_20 - W_fit_20).^2) / sum((W_20 - mean(W_20)).^2);

% Calculate R2 for A = 40
W_fit_40 = polyval(p_40, R_40);
R2_40 = 1 - sum((W_40 - W_fit_40).^2) / sum((W_40 - mean(W_40)).^2);

% Calculate R2 for A = 60
W_fit_60 = polyval(p_60, R_60);
R2_60 = 1 - sum((W_60 - W_fit_60).^2) / sum((W_60 - mean(W_60)).^2);

% Display R2 values
fprintf('R-squared (R2) values:\n');
fprintf('A = 20: R2 = %.4f\n', R2_20);
fprintf('A = 40: R2 = %.4f\n', R2_40);
fprintf('A = 60: R2 = %.4f\n', R2_60);

syms A R We_sym
% Create symbolic expressions for the coefficients and round them to a specific number of decimal places
decimal_places = 4;  % Adjust this to your desired number of decimal places
a = vpa(COEFF_A(1), decimal_places);
b = vpa(COEFF_B(1), decimal_places);
c = vpa(COEFF_C(1), decimal_places);
d = vpa(COEFF_D(1), decimal_places);
e = vpa(COEFF_E(1), decimal_places);

% Define the symbolic expression for We
We_sym = (a * A + COEFF_A(2)) * R^4 + (b * A + COEFF_B(2)) * R^3 + (c * A + COEFF_C(2)) * R^2 + (d * A + COEFF_D(2)) * 
R + (e * A + COEFF_E(2));
% Display the symbolic expression
disp(['We = ', char(We_sym)]);
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