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SUPPLEMENTARY INFORMATION



1. Dimensions of the mimicked microvasculature

The dimensions of the mimicked microvasculature, namely linear T-junction channels, linear Y-
junction channels, and bifurcating honeycomb microchannels, are illustrated in Fig. S1. The linear
channels presented two types of junctions and three different widths, namely 20 um, 40 um and 60
um. While the honeycomb bifurcation network had a constant width (30 um) and varying bifurcation

angles (30, 60 and 90°).
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Fig. S1 Dimensions of the mimicked microvasculature. (A) T-junction single microchannel; (B) Y-
junction single microchannel; (C) Honeycomb-like bifurcation microvascular channel.



2. Master fabrication

The microvasculature designs were created using Fusion 360 and printed on a mylar sheet to
fabricate a photomask (made by CAD/Art Services, Inc.). A SU-8 negative photoresist 2050 (Kayaku
Advanced Materials, Inc.) layer with a 40 um thickness was coated on 4-inch silicon wafers (Ultra-
flat single-side polished silicon substrates, 1000 um thickness, Alpha Nanotech Inc.) by a spin coater
(WS-650-23 B spin coater, Laurell Technologies Corporation). The silicon wafer, photomask
alignment and UV exposure were performed using a mask aligner system (OAI, Hydralign Series 200).
Coating the photoresist layer was fulfilled using a spin coater at 3600 rpm. The soft baking of the
spin-coated silicon wafer was done at 65 and 95 °C for 3 and 6 min, respectively. Then, the photomask
was placed onto the photoresist spin-coated silicon wafer and UV-exposed for 55 seconds. The UV
light intensity was 3.1 mWcm2. After UV exposure, the post baking process was done at 65 and 95°C
for 1 and 6 min, respectively. The unexposed surface of the photoresist layer was then removed by
dissolving it with SU-8 developer (Kayaku Advanced Materials, Inc.). The developing time was 1 min.
The thickness (40 £3 um) of the developed photoresist layer was measured by a profilometer (The
Bruker Dektak XT contact profilometer, Bruker Inc.). Finally, a silanization surface treatment was
done using chlorotrimethylsilane for 24 h to improve the bonding in the interface between mineral
and organic components.! The schematic of the masters’ fabrication procedure and PDMS replication

of the mimicked microvasculature are shown in Fig. S2.

3. Polydimethylsiloxane (PDMS) replication moulding

Polydimethylsiloxane (PDMS, Sylgard Silicone elastomer 184, Dow Corning Corp. Midland,
ML) and curing agent were mixed in a 10:1 ratio (weight by weight). PDMS mixture was poured onto
the fabricated master and then degassed to remove the air bubbles. The curing process was carried
out overnight at 60 °C in an oven. After curing, the PDMS with microchannels networks was removed
from the silicon wafer, and the holes for inlets and outlets were punched (1.5mm diameter punctures
were used). The PDMS was treated using a plasma cleaner (PDC-32G, Harrick plasma) to form an
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irreversible bond, and then a glass cover slip was used to seal the microfluidic channels. The locked

microfluidic devices were then used for experiments.
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Fig. S2 Schematic of the masters’ fabrication and the replication process of the microvasculature
devices.

4. Measurement of the viscosity and surface tension of the synthesized fluids

The working fluids were prepared according to the procedure mentioned in the work of Brookshier
and Trabell.? The xanthan gum-based haematocrit equivalent has also been used in several other
studies? 3 as a synthetic replacement of haematocrit equivalent fluids for PDMS-based microfluidics
studies. To demonstrate their similarity with human blood characteristics, their viscosity (Table S1),
surface tension (Table S2) and contact angle were measured (Table S3). The viscosities of the
working fluids were measured and reported at the shear rate of 120 st and 20°C by a rheometer

(Modular Compact Rheometer, MCR 302e, Anton Paar). The detailed results are shown in Fig. S3.



Table S1. The viscosity of the working fluids versus the viscosity of real blood was reported in the
work of Brookshier and Trabell.?

Human Working Fluid with equivalent
Fluid Viscosity (cp) uma haematocrit concentration at
Blood**
20°C
Plasma at 37 °C (0% haematocrit concentration) 1.1 1.0
Whole blood with 20% haematocrit concentration 2.1 2.5
Whole blood with 46% haematocrit concentration 5.7 6.0

*The viscosities of the working fluids were reported at the shear rate of 120 s1.
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Fig. S3 The obtained data during viscosity measurement of working fluids and porcine blood (N=3).

The surface tension and contact angle were measured by Ramé-hart Model 90 Goniometer /

Tensiometer (Ramé-hart Instrument co.).



Table S2. The surface tension of human blood at different haematocrit equivalent versus the surface
tension of working fluids.

Human Working fluid with equivalent

Fluid surface tension (mN/m) uma haematocrit concentration at
blood> © 20°C
Plasma (0% haematocrit concentration) 56.95
Whole blood with 46% haematocrit concentration 48.97

The contact angle of the synthesized fluids versus the contact angle of the real blood.

Table S3. The surface tension and contact angle of the working fluids and porcine blood (N=10).

Porcine

Water - Glycerol Water Synthetic blood Porcine plasma 46% hematocrit
Surface Tension ‘
o
—
Dyne/cm
56.95 48.97 53.24 47.26
(mN/m)
Contact angle on _
T e
0 17.00 35.50 24.50 20.90
Contact angle on
0 108.60 90.30 70.00 98.50

5. Microscopy images

The microscopy image panel for varying flow patterns for all tested air-to-liquid flow ratios, ranging

from 10 to 100, for both junction types and all fluids, are presented in Supplementary Information

Figs. S4 to Sé.
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Fig. S4. Microscopic images of the flow patterns of air bubbles and liquid slugs in T-junction and Y-junction of 20 pm channel width across
different air-to-liquid ratios for the water and synthetic blood.
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Fig. S5. Microscopic images of the flow patterns of air bubbles and liquid slugs in T-junction and Y-junction of 40 um channel width across
different air-to-liquid ratios for the water and synthetic blood.
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Fig. S6. Microscopic images of the flow patterns of air bubbles and liquid slugs in T-junction and Y-junction of 60 um channel width across
different air-to-liquid ratios for the water and synthetic blood.



6. Variation of the fluid pressure drop across the channel.

The variation of the pressure drop in channels with both T and Y-junctions for water and synthetic
blood for different air-to-liquid ratios is presented in Fig. S7. During the monitoring of the pressure
drops for an extended period (which was 140, 50, and 30 min for the 20, 40 and 60 um channels,
respectively), two pressure ranges were observed, namely (i) a highly dynamic region, at the start of
the injection of the liquid and air, where the hydraulic pressure raised considerably, as shown in Fig.
S7, and then (ii) a stabilized region, during which the pressure values reached constant levels, as
presented in Fig. S7 (and further detailed in Supplementary Information, Figs. S8 to S13). In the
highly dynamic region, the pressure values were up to twice the values compared to the constant
region (Fig. S7). In the stabilized region of the pressure drop, which is the focus of the present study,
two different distributions of bubble and total slug lengths were observed: (i) a more uniform-sized
total slug and (ii) a non-uniform total slug sizes. Figs. S4 to S6 and Movie. S2 show the microscopic
images of these two size distributions in corresponding air-to-liquid ratios. For uniformly sized total
slugs, the air bubbles and liquid slugs traversed harmonically along the channel without a significant
difference in the length of the moving bubbles or liquid slugs (referred to here as harmonic motion).
This pattern was observed in most air-to-liquid ratios for flows in 20 um channels. For 40 and 60 pm
channels, the harmonic motion of the bubble occurred just in a few instances when the air-to-liquid
ratios were lower. For higher air-to-liquid ratios in the Y-junction, non-uniform distributed lengths

of the total slugs were observed.

Fig. S7 presents general trends of the pressure drop measured for varying air-to-liquid ratios, derived
from independent experiments (1700 <n< 44000, and 3500 <n< 198000 measurements, for the
water and synthetic blood, respectively). High variations (longer vertical lines for standard
deviations in Fig. S7) correspond to irregular flow patterns resulting from the resistance developed
due to air bubble entrapment in the channels, which is phenomenologically similar to gas embolism

events. Conversely, smaller variations correspond to more uniform flow patterns and predictable
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characteristics of the total slugs, i.e., successive displacement of air bubbles and liquid phases without
considerable stagnation. The bubbles resulting from this seamless displacement are denominated as
Taylor bubbles (or continuously displacing bubbles).” The pressure drop in a straight channel with
Taylor flow is a function of the length of liquid slugs, bubble lengths, their velocity, channel width,
and fluid viscosity.? Therefore, to interpret the experimental results of the pressure drop, factoring

in the variation of the mentioned parameters is essential.’

A comparison of the graphs in Fig. S7 suggests that the effect of fluid viscosity has a considerably
higher impact on the pressure drop variations than other parameters, such as the fluid flow velocity,
air-to-liquid ratio, flow pattern, and channel width. The channels accommodating fluid flows
characterized by higher viscosity exhibit higher pressure drops than the ones with a lower viscosity.
For instance, in T-junctions, the higher viscosity of the synthetic blood compared with the water
viscosity translates into a generally higher pressure drop (Fig. S7B) compared to that for water (Fig.

S7A). A similar pattern was observed with Y-junctions, as shown in Fig. S7C and Fig. S7D.

Apart from the liquid viscosity, the hydraulic resistance of the channels with T-junction affects
considerably more the pressure drop compared to those with Y-junction (Fig. S7A and S7B).
Furthermore, in T junctions with 20 pm channel width exhibits the highest hydraulic resistance,
followed by the channels with 40 um and 60 um widths, and consequently, the highest pressure drop.
An increase in the channel width decreased the pressure drop, and consequently, the 40 and 60 pm
channels have a lower pressure drop than the 20 um channels. As a result, the movement of the air
bubble in 20 um channels is particularly challenging, with the highest propensity for halting. The
application of Hagen-Poiseuille relationship (Eq. 1), stating that an increase in the liquid viscosity
increases the air pressure (or pressure drop), can be observed by comparing Fig. S7A and S7B. The
findings are in line with previously published results.” The Hagen-Poiseuille correlation is further

detailed in Eq. 1:
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Where AP represents pressure drop (Pa), p denotes the dynamic viscosity (kg m s1), L indicates the
length of the channel (m), Q is the fluid flowrate (m3 s!), and finally dy is the hydraulic diameter of

the channel (m).

Similar to T-junctions, Y-junctions also presented a higher hydraulic pressure for the synthetic blood
than water. However, unlike the T-junctions, Y-junctions, which are the default geometry in the
vascular system, presented a different trend with respect to the pressure drop. The channel with
larger widths (namely 40 pm) showed a higher pressure drop compared to the lower channel widths
(20 pm), suggesting a different and unpredictable behaviour of flow in the presence of gas bubbles
dependent on the junction type. In a similar study, variations in pressure drops within a channel with
T-junction were examined.!’? The study found that a higher pressure drop can be as a result of
increasing the channel width or by increasing the fluid flow rate, which, in turn, affects the flow
pattern of bubbles within the channel. In our study, while Eq. 1 clearly demonstrates the direct
impact of viscosity (i) and flow rate (Q) (Fig S7A and S7B), another factor not considered in the
Hagen-Poiseuille relation is the movement patterns of the bubbles in channel of different width. This
can be attributed to the unpredictable behavior in pressure drop with 40 um channels observed to
be higher than in the 20 um channels. Following the above observation of anomaly, it is obvious to
expect the pressure drop to be highest in 60 um channel with Y-junctions among the studied widths,
however, it was the not the case. The possible explanation is in 60 um channels, the flow pattern was
stratified, and the layer of the gas moved parallelly along the layer of the liquid for both water and
the synthetic fluid. As a result, only a linear variation of the air pressure for different air-to-liquid
ratios was observed for Y-junctions (green lines in Fig. S7C and S7D). This observation emphasizes
on the fact that was not earlier studied with invitro experiments, but detailed here stating that the

patterns of bubble movement could be critical for the pressure drop.
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Fig. S7 Graphs of the measured air pressure for different air-to-liquid ratios for different viscosity
and channel junctions. A. water and T-junction channel; B. the synthetic blood and T-junction
channel; C. water and Y-junction channel; D. the synthetic blood and Y-junction channel. The standard
deviation represents the pressure variation of the injected airflow measured by the pressure sensor,
with larger values representing larger fluctuations in the pressure of the air.
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Fig. S8 Pressure evolution inside channels with 20 pm width for water. A. T-junction, B. Y-junction.
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Fig. S11 Pressure evolution inside channels with 20 um width for the synthetic blood. A. T-junction,
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Fig. S13 Pressure evolution inside channels with 60 um width for the synthetic blood. A. T-junction,
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7. Length of the liquid slug and histogram of the bubble length in T and Y-junctions

A representative panel of the length of the liquid slug and histogram of the bubble length observed

with different flow ratios and equivalent concentrations of haematocrit for both T-junction and Y-

junction is shown below.
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8. Distribution of bubble lengths
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Fig. S21 Bivariate histograms depicts the relationship between bubble volume and air pressure at various air-to-liquid ratios in T- and Y-
junction channels with water as the working fluid.
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Fig. S22 Bivariate histograms depicts the relationship between bubble volume and air pressure at various air-to-liquid ratios in T- and Y-
junction channels with synthetic blood as the working fluid.
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9. Quantitative prediction of dimensionless numbers in extended channel widths
Considering the available dataset of dimensionless numbers obtained at various air-to-liquid ratios
and channel widths, the development of a predictive function for estimating dimensionless numbers
in larger channels proves to be a valuable tool for assessing the potential for gas embolism. This
function relates a dimensionless number, such as Weber, Capillary, or the inverse form of Euler
numbers, as a dependent variable to two independent variables: the air-to-liquid ratio and channel
width. Using the curve fitting toolbox in MATLAB software, a fourth-order polynomial function
demonstrates a suitable fit to the experimental data of these dimensionless numbers. This fit is
assessed with respect to the coefficient of determination, denoted as R2.
Dimensionless Number = C4R4 + C3R3 + CZR2 +C,R+C, Eq.2

Ci=Apdy+ Ay, Eq.3
where R is representative of the air-to-liquid ratio, while C; (including C,4, C3, C;, C4, and C,) signifies
the coefficients of a fourth-order polynomial. These coefficients are intricately linked to the channel
width. Linear regression analysis revealed a perfect match between C; and channel width using
experimental data. A;; and A;; are responsible for denoting the first and second coefficients in this
linear equation, respectively. Table S4 in the supplementary information provides the coefficients for
the proposed functions associated with various dimensionless numbers. Furthermore, the MATLAB
code included in the supplementary information was employed to perform the regression and extract

the aforementioned coefficients.
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Table S4. Coefficients of the dimensionless numbers relationships

C4 C3 C2 Cl C0

Ci=A;1du+Aj; Ci=A;1dy+A;; Ci=A;1dy+A;; Ci=A;j1dy+A;; Ci=Ai1dp+Aj;
Capillary As 1.99E-11 Az -3.57E-09 Ay 2.10E-07 Ay -1.30E-06 A1 2.18E-06
Number Ay -1.54E-09 A, 2.60E-07 Ay, -1.37E-05 Aq 2.31E-04 Ag 2.08E-05
(Euler Ay -4.63E-11 Asq 7.81E-09 Ay -2.29E-07 Aqq 3.70E-06 Aoq -6.41E-06
Number]'l Ay -4.72E-11 A32 7.52E-09 Aj; -3.21E-06 Az 4.83E-05 Agz 1.39E-04
Weber A,; | -3.85E-13 Asq 3.85E-11 Ay 1.85E-09 Aqq -3.53E-08 Aoq 8.61E-08
Number Ay -1.78E-12 Az 9.13E-10 Ay, -1.23E-07 Aq 2.13E-06 Ay, -1.30E-06
Capillary Ay -4.72E-11 Az 1.12E-08 Ay -8.59E-07 Aiq 2.29E-05 Ao1 2.30E-05
Number Ay -3.18E-11 A, 2.74E-08 Ay, -5.41E-06 Ai, 3.46E-04 Ag; -4.01E-04
(Euler Ay -2.18E-12 Asq 5.40E-10 Ay -4.44E-08 Aqq 1.30E-06 A1 5.18E-07
Number)! AL 3.69E-11 Az, -8.57E-09 Ay 6.31E-07 Ai; -1.47E-05 Ay -1.40E-05
Weber A, | -1.37E-13 Asq 3.44E-11 Ay -2.85E-09 A 8.32E-08 Aoz 2.89E-08
Number Al 2.13E-12 A -5.28E-10 Ay, | 4.16E-08 Aq -1.08E-06 Ay, 6.59E-07
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10. MATLAB code employed to perform the regression and extract the aforementioned

coefficients

clc

% Set the font name and size

font_name = 'Cambria’; % Change to your desired font name
font_size =18; % Change to your desired font size

% Set the font name and size for the axis numbers (tick labels)
font_name_axis = 'Cambria’; % Change to your desired font name
font_size_axis = 24; % Change to your desired font size

% Get the current axes handle

ax = gca;

% Set the font and font size for the current figure

set(gca, 'FontName', font_name, 'FontSize', font_size);

TW_ratio20 = [0 20 30 40 50 60 70 80];
TW_ratio40 = [0 10 20 30 40 50 60 70 80 90];
TW_ratio60 = [0 10 20 30 40 50 60 70 80 90];

TW_Weber20 = [0 3.22685E-06 5.72623E-06 7.40115E-06 1.20787E-05 2.93717E-05 3.68791E-05 3.63675E-05];
TW_Weber40 = [0 1.70012E-05 1.55141E-05 3.67985E-05 3.85376E-05 9.90227E-05 0.000178512 0.000209886
0.000289352 0.00037723];
TW_Weber60 = [0 6.80791E-06 2.87896E-05 6.57978E-05 8.95962E-05 0.000257327 0.000346525 0.000482736
0.00052912 0.000613177];

TW_Cap20 = [0 0.001362582 0.00181513 0.002063587 0.002636228 0.00411091 0.004606417 0.004574353];
TW_Cap40 = [0 0.002564671 0.002449934 0.003773169 0.003861304 0.006189547 0.008310457 0.00901121
0.010580463 0.012080768];
TW_Cap60 = [0 0.001485315 0.003054424 0.004617612 0.005388356 0.00913176 0.010596904 0.012507382
0.013094498 0.014096275];

TW_Eu20=[0 0.000186491 0.000387488 0.000446536 0.000848976 0.002112639 0.003217654 0.002935698];
TW_Eu40=[00.001012739 0.00092158 0.002902816 0.003002219 0.006769105 0.013025753 0.014878185
0.026067682 0.030758378];

TW_Eu60=[0 0.000430066 0.001830392 0.003950511 0.005316743 0.013770466 0.021797004 0.028642512
0.042097741 0.045405265];

T46p_ratio20 = [0 30 40 50 60 70 80 90 100];
T46p_ratio40 = [0 10 20 30 40 50 60 70 80 90 100];
T46p_ratio60 = [0 10 20 30 40 50 60 70 80 90 100];

T46p_Weber20 = [0 6.04884E-06 8.19823E-06 5.01072E-06 4.9535E-06 4.27728E-06 5.28102E-06 4.45698E-06
4.36609E-06];

T46p_Weber40 = [0 1.80509E-05 1.99552E-05 2.46678E-05 2.37694E-05 1.58328E-05 1.59051E-05 1.63199E-05
1.49535E-05 1.36293E-05 1.38292E-05];

T46p_Weber60 = [0 3.22782E-05 3.50218E-05 3.98565E-05 3.28944E-05 2.23126E-05 2.42658E-05 2.19764E-05
2.27132E-05 2.38509E-05 2.82211E-05];

T46p_Cap20 = [0 0.008724139 0.010156557 0.007940293 0.007894828 0.007336184 0.008151647 0.007488705
0.00741196];

T46p_Cap40 = [0 0.012358191 0.012993705 0.014446748 0.014181244 0.011574022 0.011600396 0.01175071
0.011248044 0.010738446 0.010816933];

T46p_Cap60 = [0 0.015124441 0.015754115 0.0168064 0.015268132 0.012574758 0.013113607 0.012479676
0.012687162 0.013001022 0.014142026];

T46p_Eu20=[0 0.000112542 0.000153802 0.000100057 0.000103018 9.28805E-05 0.000108086 8.51238E-05
9.15146E-05];
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T46p_Eu40=[0 0.000310541 0.000383635 0.000492954 0.000471466 0.000317479 0.000327357 0.000326358
0.000282773 0.000263297 0.000268691];
T46p_Eu60=[0 0.000513807 0.000577667 0.000618211 0.000553374 0.000391736 0.000419995 0.000375876
0.000379061 0.000380158 0.000424233];

% Data for A =20
R_20 = TW_ratio20;%
W_20 =TW_Cap20;%T46p_Cap20;%

% Data for A =40
R_40 = TW_ratio40;%
W_40 =TW_Cap40;%T46p_Cap40;%

% Data for A = 60
R_60 = TW_ratio60;%
W_60 = TW_Cap60;%Weber60;%T46p_Cap60;%

% Define the input data for three values of A
A_values = [20, 40, 60];

% Perform linear regression for each set of data
coefficients_20 = polyfit(R_20, W_20, 4);
coefficients_40 = polyfit(R_40, W_40, 4);
coefficients_60 = polyfit(R_60, W_60, 4);

%Building coefficient matrix
COEFF=[coefficients_20;coefficients_40;coefficients_60];

COEFF_A=polyfit(A_values,COEFF(:,1),1);
COEFF_B=polyfit(A_values,COEFF(:,2),1);
COEFF_C=polyfit(A_values,COEFF(:,3),1);
COEFF_D=polyfit(A_values,COEFF(:,4),1);
COEFF_E=polyfit(A_values,COEFF(;,5),1);

% Data for A = 20

% Fit a fourth-order polynomial to the data

p_20 = polyfit(R_20, W_20, 4);

% Create a finer grid of R values for the fitted curve

R_fit = linspace(min(R_20), max(R_20), 1000);

% Evaluate the polynomial at the finer grid of R values

W_fit = polyval(p_20, R_fit);

% Plot the original data and the fitted curve

plot(R_20, W_20, 'r*', 'MarkerFaceColor', 'red’, 'DisplayName', 'Experimental data for 20 um','MarkerSize', 10);
hold on

plot(R_fit, W_fit, "-r','DisplayName’, 'Fitted curve for 20 um','LineWidth', 2);
grid on;

% Data for A =40

% Fit a fourth-order polynomial to the data

p_40 = polyfit(R_40, W_40, 4);

% Create a finer grid of R values for the fitted curve

R_fit = linspace(min(R_40), max(R_40), 1000);

% Evaluate the polynomial at the finer grid of R values

W_fit = polyval(p_40, R_fit);

% Plot the original data and the fitted curve

plot(R_40, W_40, 'bs', 'MarkerFaceColor', 'blue’, 'DisplayName', 'Experimental data for 40 um','MarkerSize', 10);
plot(R_fit, W_fit, '-b’,'DisplayName’, 'Fitted curve for 40 um','LineWidth',2);

% Data for A = 60
% Fit a fourth-order polynomial to the data
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p_60 = polyfit(R_60, W_60, 4);

% Create a finer grid of R values for the fitted curve

R_fit = linspace(min(R_60), max(R_60), 1000);

% Evaluate the polynomial at the finer grid of R values

W_fit = polyval(p_60, R_fit);

% Plot the original data and the fitted curve

plot(R_60, W_60, 'go’, '"MarkerFaceColor’, 'green’, 'DisplayName’, 'Experimental data for 60 um','MarkerSize', 10);
plot(R_fit, W_fit, 'g’, 'DisplayName’, 'Fitted Curve for 60 um’,'LineWidth',2);

A=200:300:2000;
R=0:1:100;

for i=1:length(A)

for j=1:length(R)
We(j)=((COEFF_A(1)*A(i)+COEFF_A(2))*R(j)*4)+((COEFF_B(1)*A(i)+COEFF_B(2))*R(j)*3)+((COEFF_C(1)*A(i)+COEFF_C
(2))*R(j)*2)+((COEFF_D(1)*A(i)+COEFF_D(2))*R(j)*1)+((COEFF_E(1)*A(i)+COEFF_E(2)));

end
plot(R,We,'LineWidth', 2)

hold on
end

% Calculate R2 for A =20
W_fit_20 = polyval(p_20, R_20);
R2_20=1-sum((W_20 - W_fit_20).”2) / sum((W_20 - mean(W_20)).72);

% Calculate R2 for A =40
W_fit_40 = polyval(p_40, R_40);
R2_40 =1 - sum((W_40 - W_fit_40).”2) / sum((W_40 - mean(W_40)).*2);

% Calculate R2 for A = 60
W_fit_60 = polyval(p_60, R_60);
R2_60 =1 - sum((W_60 - W_fit_60).”2) / sum((W_60 - mean(W_60))."2);

% Display R2 values
fprintf('R-squared (R2) values:\n');
fprintf('A = 20: R2 = %.4f\n', R2_20);
fprintf('A = 40: R2 = %.4f\n’, R2_40);
fprintf('A = 60: R2 = %.4f\n’, R2_60);

syms A R We_sym

% Create symbolic expressions for the coefficients and round them to a specific number of decimal places
decimal_places = 4; % Adjust this to your desired number of decimal places

a =vpa(COEFF_A(1), decimal_places);

b = vpa(COEFF_B(1), decimal_places);

¢ =vpa(COEFF_C(1), decimal_places);

d = vpa(COEFF_D(1), decimal_places);

e = vpa(COEFF_E(1), decimal_places);

% Define the symbolic expression for We

We_sym = (a * A+ COEFF_A(2)) * R"4 + (b * A + COEFF_B(2)) * R"3 + (c * A + COEFF_C(2)) * R*2 + (d * A + COEFF_D(2)) *
R+ (e * A+ COEFF_E(2));

% Display the symbolic expression

disp(['We ="', char(We_sym)]);

29



References

OO W

K. Subramani, in Emerging nanotechnologies for manufacturing, Elsevier, 2015, pp. 279-293.
K. Brookshier and J. Tarbell, Biorheology, 1993, 30, 107-116.

L. Webb, The Pegasus Review: UCF Undergraduate Research Journal, 2020, 12, 6.

R. E. Wells and E. W. Merrill, The Journal of clinical investigation, 1962, 41, 1591-1598.

M. A. Elblbesy, AIMS Biophysics, 2019, 6, 39-46.

H. N. Harkins and W. D. Harkins, The Journal of Clinical Investigation, 1929, 7, 263-281.

R. S. Abiev, Chemical engineering journal, 2013, 227, 66-79.

S. Molla, D. Eskin and F. Mostowfi, Lab on a Chip, 2011, 11, 1968-1978.

R. Zhang, F. Tao, H. Jin, X. Guo, G. He, L. Ma, R. Zhang, Q. Gu and S. Yang, Processes, 2022, 10,
799.

M. Akbari, D. Sinton and M. Bahrami, 2009.

Y. Yin, C. Zhy, R. Guo, T. Fu and Y. Ma, International Journal of Heat and Mass Transfer, 2018,
127, 484-496.

30



