Supplementary information

Evaluating thrombosis risk and patient-specific treatment strategy using an atherothrombosis-on-chip model

Fahima Akther^{1,2}, Hedieh Fallahi¹, Jun Zhang¹, Nam-Trung Nguyen¹, Hang T. Ta^{1,2,3,*}

¹Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia

²Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia

³School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia

* Correspondence: Hang T. Ta (<u>h.ta@griffith.edu.au</u>)

Flow rate calculation for mimicking physiological shear rate in the device

The flow rate was calculated by using the following equation:

To convert the arterial shear rate (1,000 s⁻¹) into flow rate, we used Newton's law of viscosity. Briefly,

Newton's law of viscosity:

		dv
$\tau = \eta$	×	\overline{dx}

Where, $\tau =$ shear stress $\eta =$ viscosity (Pa.s) $\frac{dv}{dt}$

 $dx = \text{shear rate } (s^{-1})$

dyn/cm² is often used as dynamic viscosity unit instead of Pa.s in the cardiovascular system.

Since 1 $Pa = 10 \text{ dyn.s/cm}^2$,

The dynamic viscosity of the blood = 3×10^{-3} Pa.s

$$= 3 \times 10^{-2} \, \mathrm{dyn.s/cm^2}$$

Since the shear rate is 1,000 s⁻¹, the shear stress is calculated as,

$$\tau = 3 \times 10^{-2} \text{ dyn.s/cm}^2 \times 1,000 \text{ s}^{-1}$$

The shear stress was calculated using the following equation ^[1-4]

$$\tau = \frac{6\eta Q}{h^2 w} \dots \dots \dots \dots (2)$$

Here,

 τ : shear stress

h: height of the channel= 50 μ m= 0.005 cm

w: width of the channel= $200 \ \mu m = 0.02 \ cm$

 η : dynamic viscosity of the blood (dyn.s/cm²) = 3 × 10⁻² dyn.s/cm²

Q: Flow rate

By rearranging equation 2 and taking the value from equation 1,

$$Q = \frac{\tau(h^2 w)}{6\eta} = \frac{\frac{30 \, dyn/cm^2 \, (0.005)^2 \, cm^2 \, x \, 0.02 cm}{6 \, (3 \, x \, 10^{-2} \frac{dyn.s}{cm^2})}{8.33 \, x \, 10^{-5} \, \text{cm}^3/\text{s}}$$

We know, $1 \text{ cm}^3 = 1 \text{ mL}$,

 $Q = 8.33 \text{ x } 10^{-5} \text{ cm}^3/\text{s} = 8.33 \text{ x } 10^{-5} \text{ ml/s} = 4.998 \ \mu\text{L/min}$