Supporting Information for

# Dielectrophoretic Characterization and Selection of Nonspherical Flagellate Algae in the Parallel Channels with Right-angle Bipolar Electrodes

Xiaoming Chen,<sup>\*a, b</sup> Shun Liu,<sup>a, b</sup> Mo Shen,<sup>a, b</sup> Jishun Shi,<sup>a, b</sup> Chungang Wu,<sup>a, b</sup> Zhipeng Song,<sup>a, b</sup> Yong Zhao<sup>\*a, b</sup>

a School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China. E-mail: chenxiaoming@neuq.edu.cn

b Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China. E-mail: zhaoyong@ise.neu.edu.cn.

## Section 1: Calculation of capture rate and escape rate

The calculation formula of flagellate microalgae<sup>1, 2</sup>:

$$Capture Rate = \frac{N_{i-capture}}{N_{i-capture} + N_{i-flowout}}$$
(S1)

where  $N_{i-capture}$  represents the capture number of cells *i* to the electrodes,  $N_{i-flowout}$  represents flow-out number of cells *i* in channels.

The calculation formula of flagellate microalgae<sup>1</sup>:

$$Escape Rate = \frac{N_{i-escape}}{N_{i-captured}}$$
(S2)

where  $N_{i-escape}$  represents the escape number of cells *i* from electrodes,  $N_{i-captured}$  represents the captured number of cells *i* at electrodes.



## Section 2: Escape behaviors of flagellate algae

Fig. S1 Escape behaviors of flagellate algae. Escape of (a) *Euglena*, (b) *Dunaliella* salina.

Section 3: Migration of captured flagellate microalgae between electrodes



Fig. S2 Migration of captured flagellate microalgae between front and backward bipolar electrodes. (a) The sketch map demonstrating the escape and secondary capture of trapped flagellate microalgae. (b/c) Migration of captured *Platymonas/Euglena* between front and backward bipolar electrodes.

Section 4: The capture of *Euglena* with different aspect ratios (ARs)



Fig. S3 The capture of *Euglena* with AR=2 and 5.

# Section 5: Comparison with conventional microfluidic separation

# methods of microalgae

|                              | 1                 | 1                             |                               |  |
|------------------------------|-------------------|-------------------------------|-------------------------------|--|
|                              |                   | microalgae                    |                               |  |
| Author                       | Samples           | Methods                       | Recovery Purity               |  |
| Y Wang, et al <sup>3</sup>   | Platymonas,       | Dielectrophoresis aroused by  | About 90% for                 |  |
|                              | Closterium, and   | 3-dimensional electrode       | Platymonas, Closterium        |  |
|                              | polystyrene       |                               |                               |  |
|                              | particles         |                               |                               |  |
| Y Wang, et al <sup>4</sup>   | Platymonas and    | Deterministic lateral         | 89.4% for <i>Platymonas</i>   |  |
|                              | impurities        | displacement                  |                               |  |
| D Jiang, et al <sup>5</sup>  | H. pluvialis and  | dean-coupled inertial         | 87.1% for <i>H. pluvialis</i> |  |
| _                            | ciliate           | microfluidics                 | _                             |  |
| H Hadady, et al <sup>6</sup> | C. reinhardtii of | Oblique interdigitated        | 74% for the high-lipid        |  |
|                              | different lipid   | electrode array               | C. reinhardtii                |  |
|                              | content           | _                             |                               |  |
| The manscript                | Platymonas and    | Right-angle bipolar electrode | 92.78% for D. salina          |  |
| _                            | D. salina, H.     | array                         | and 92.06% for <i>H</i> .     |  |
|                              | pluvialis and     | -                             | pluvialis                     |  |
|                              | Euglena           |                               | -                             |  |

|  | Table S1 | Comparison | with con | ventional | microfluidi | c separation | methods of |
|--|----------|------------|----------|-----------|-------------|--------------|------------|
|--|----------|------------|----------|-----------|-------------|--------------|------------|

## Section 6: Statistical Significance Testing

(a) Separation of Chlamydomonas reinhardtii and Haematococcus pluvialis

| Table S2 Confidence intervals of capture rate(CR) under different frequencies   |  |
|---------------------------------------------------------------------------------|--|
| (SD:standard deviation, CI: confidence interval at the confidence level of 95%) |  |

|           | Cl    | hlamydomor | nas reinhai | rdtii    | Haematococcus pluvialis |       |          |             |
|-----------|-------|------------|-------------|----------|-------------------------|-------|----------|-------------|
| Frequency | Mean  | SD(%)      | Lower       | Upper    | Mean                    | SD(%) | Lower    | Upper       |
| (MHz)     | of CR |            | limit of    | limit of | of CR                   |       | limit of | limit of CI |
|           | (%)   |            | CI(%)       | CI (%)   | (%)                     |       | CI(%)    | (%)         |
| 0.5       | 35.00 | 0.307      | 34.71       | 35.30    | 20.20                   | 1.318 | 18.94    | 21.46       |
| 1.0       | 33.00 | 1.439      | 31.63       | 34.38    | 17.41                   | 0.585 | 16.85    | 17.97       |
| 2.0       | 10.16 | 0.619      | 9.57        | 10.75    | 0                       | 0     | 0        | 0           |
|           |       |            |             |          |                         |       |          |             |
| 5.0       | 0     | 0          | 0           | 0        | 0                       | 0     | 0        | 0           |

#### Table S3 Confidence intervals of CR with different flow rates

|                    | Chlamydomonas reinhardtii |       |                   |                   | Haematococcus pluvialis |       |                   |                      |
|--------------------|---------------------------|-------|-------------------|-------------------|-------------------------|-------|-------------------|----------------------|
| Flow<br>rate(uL/b) | Mean<br>of CR             | SD(%) | Lower<br>limit of | Upper<br>limit of | Mean                    | SD(%) | Lower<br>limit of | Upper<br>limit of CI |
| Tate(μL/II)        | (%)                       |       | CI(%)             | CI (%)            | of CR<br>(%)            |       | CI(%)             | (%)                  |
| 21.6               | 17.79                     | 0.463 | 17.35             | 18.23             | 21.50                   | 1.08  | 20.47             | 22.53                |
| 36.0               | 15.59                     | 0.870 | 14.76             | 16.42             | 0                       | 0     | 0                 | 0                    |
| 54.0               | 14.35                     | 0.460 | 13.91             | 14.79             | 0                       | 0     | 0                 | 0                    |

Table S4 Confidence intervals of CR under different voltage amplitudes

|                   | Chlamydomonas reinhardtii |       |          |          | Haematococcus pluvialis |       |          |             |
|-------------------|---------------------------|-------|----------|----------|-------------------------|-------|----------|-------------|
| Voltage(          | Mean                      | SD(%) | Lower    | Upper    | Mean                    | SD(%) | Lower    | Upper       |
| V <sub>PP</sub> ) | of CR                     |       | limit of | limit of | of CR                   |       | limit of | limit of CI |
|                   | (%)                       |       | CI(%)    | CI (%)   | (%)                     |       | CI(%)    | (%)         |
| 10.00             | 14.21                     | 0.475 | 13.76    | 14.67    | 0                       | 0     | 0        | 0           |
| 11.25             | 17.62                     | 0.659 | 16.99    | 18.25    | 0                       | 0     | 0        | 0           |
| 12.50             | 24.40                     | 0.593 | 23.83    | 24.96    | 7.28                    | 0.625 | 6.68     | 7.87        |
| 13.75             | 25.48                     | 0.508 | 24.99    | 25.97    | 14.40                   | 0.900 | 13.54    | 15.26       |
| 15.00             | 28.80                     | 1.024 | 27.82    | 29.77    | 17.42                   | 0.540 | 16.90    | 17.93       |

|                   |       | Euglena |          |          |       | Haematococcus pluvialis |          |             |
|-------------------|-------|---------|----------|----------|-------|-------------------------|----------|-------------|
| Voltage(          | Mean  | SD(%)   | Lower    | Upper    | Mean  | SD(%)                   | Lower    | Upper       |
| V <sub>PP</sub> ) | of CR |         | limit of | limit of | of CR |                         | limit of | limit of CI |
|                   | (%)   |         | CI(%)    | CI (%)   | (%)   |                         | CI(%)    | (%)         |
| 13.75             | 60.45 | 1.412   | 59.11    | 61.80    | 3.94  | 0.24                    | 3.71     | 4.17        |
| 15.00             | 66.21 | 1.636   | 64.65    | 67.77    | 5.76  | 0.499                   | 5.28     | 6.23        |
| 16.25             | 83.51 | 1.271   | 82.30    | 84.73    | 9.78  | 0.536                   | 9.28     | 10.30       |
| 17.50             | 85.34 | 0.657   | 84.71    | 85.96    | 11.79 | 0.342                   | 11.46    | 12.12       |
| 18.00             | 89.59 | 0.663   | 88.96    | 90.22    | 13.45 | 0.776                   | 12.71    | 14.19       |

Table S5 Confidence intervals of CR under different voltage amplitudes

Table S6 Confidence intervals of escape rate(ER) under different voltage amplitudes

|                   |       | Eug   | lena     |          | Haematococcus pluvialis |       |          |             |
|-------------------|-------|-------|----------|----------|-------------------------|-------|----------|-------------|
| Voltage(          | Mean  | SD(%) | Lower    | Upper    | Mean                    | SD(%) | Lower    | Upper       |
| V <sub>PP</sub> ) | of ER |       | limit of | limit of | of CR                   |       | limit of | limit of CI |
|                   | (%)   |       | CI(%)    | CI (%)   | (%)                     |       | CI(%)    | (%)         |
| 13.75             | 42.80 | 1.934 | 40.95    | 44.64    | 100                     | 0     | 100      | 100         |
| 15.00             | 38.44 | 2.032 | 36.50    | 40.38    | 100                     | 0     | 100      | 100         |
| 16.25             | 24.83 | 1.808 | 23.10    | 26.55    | 33.12                   | 3.337 | 29.94    | 36.30       |
| 17.50             | 8.61  | 0.520 | 8.11     | 9.10     | 0                       | 0     | 0        | 0           |
| 18.00             | 0     | 0     | 0        | 0        | 0                       | 0     | 0        | 0           |

Table S7 Confidence intervals of separation purity under different voltage amplitudes

| Voltage(V <sub>PP</sub> ) | Mean of Purity | SD(%) | Lower limit of CI(%) | Upper limit of CI (%) |
|---------------------------|----------------|-------|----------------------|-----------------------|
|                           | (%)            |       |                      |                       |
| 13.75                     | 68.63          | 1.103 | 67.58                | 69.68                 |
| 15.00                     | 70.53          | 1.468 | 69.13                | 71.93                 |
| 16.25                     | 81.99          | 0.492 | 81.52                | 82.46                 |
| 17.50                     | 85.53          | 0.888 | 84.69                | 86.38                 |
| 18.00                     | 92.06          | 1.054 | 91.06                | 93.07                 |

|                   | Platymonas |       |          |          | Dunaliella salina |       |          |             |
|-------------------|------------|-------|----------|----------|-------------------|-------|----------|-------------|
| Voltage(          | Mean       | SD(%) | Lower    | Upper    | Mean              | SD(%) | Lower    | Upper       |
| V <sub>PP</sub> ) | of CR      |       | limit of | limit of | of CR             |       | limit of | limit of CI |
|                   | (%)        |       | CI(%)    | CI (%)   | (%)               |       | CI(%)    | (%)         |
| 15.00             | 14.57      | 0.949 | 13.66    | 15.47    | 5.01              | 0.359 | 4.66     | 5.35        |
| 17.50             | 32.69      | 1.267 | 31.48    | 33.90    | 5.65              | 0.913 | 4.78     | 6.52        |
| 20.00             | 39.44      | 0.488 | 38.97    | 39.90    | 6.55              | 0.325 | 6.24     | 6.86        |
| 22.50             | 41.84      | 1.665 | 40.26    | 43.43    | 9.10              | 0.373 | 8.75     | 9.46        |
| 25.00             | 44.24      | 0.665 | 43.60    | 44.87    | 9.49              | 0.456 | 9.05     | 9.92        |
| 27.50             | 55.50      | 0.664 | 54.87    | 56.13    | 9.93              | 0.481 | 9.47     | 10.39       |
| 32.50             | 56.96      | 1.280 | 55.74    | 58.18    | 10.53             | 0.648 | 9.91     | 11.15       |
| 35.00             | 72.39      | 1.599 | 70.86    | 73.91    | 11.01             | 0.648 | 10.39    | 11.63       |

Table S8 Confidence intervals of CR under different voltage amplitudes

Table S9 Confidence intervals of separation purity under different voltage amplitudes

| Voltage(V <sub>PP</sub> ) | Mean of Purity | SD(%) | Lower limit of CI(%) | Upper limit of CI (%) |
|---------------------------|----------------|-------|----------------------|-----------------------|
|                           | (%)            |       |                      |                       |
| 15.00                     | 73.61          | 1.690 | 72.00                | 75.22                 |
| 17.50                     | 84.97          | 1.700 | 83.35                | 86.59                 |
| 20.00                     | 88.48          | 0.792 | 87.72                | 89.23                 |
| 22.50                     | 88.28          | 0.656 | 87.66                | 88.91                 |
| 25.0                      | 88.16          | 1.572 | 86.67                | 89.66                 |
| 27.50                     | 91.13          | 0.926 | 90.24                | 92.01                 |
| 32.50                     | 91.39          | 1.008 | 90.42                | 92.35                 |
| 35.00                     | 92.78          | 1.027 | 91.80                | 93.76                 |

## (d) Separation of Live and Dead *Euglena*

| Tuble D | Tuble 510 Confidence mervus of Cit under amerent voltage amplitudes |       |                      |                       |  |  |  |  |  |  |
|---------|---------------------------------------------------------------------|-------|----------------------|-----------------------|--|--|--|--|--|--|
| Status  | Mean of CR(%)                                                       | SD(%) | Lower limit of CI(%) | Upper limit of CI (%) |  |  |  |  |  |  |
| Live    | 99.06                                                               | 0.880 | 98.22                | 99.90                 |  |  |  |  |  |  |
| Dead    | 0                                                                   | 0     | 0                    | 0                     |  |  |  |  |  |  |

#### Table S10 Confidence intervals of CR under different voltage amplitudes

# Table S11 Confidence intervals of separation purity under different voltage amplitudes

| Status | Mean of Purity | SD(%) | Lower limit of CI(%) | Upper limit of CI (%) |
|--------|----------------|-------|----------------------|-----------------------|
|        | (%)            |       |                      |                       |
| Live   | 100            | 0     | 100                  | 100                   |
| Dead   | 97.12          | 2.647 | 94.60                | 99.65                 |

### **Section 7: Videos**

Video S1 Dielectrophoretic assembly of Euglena and H. pluvialis at A=17.5 V<sub>pp</sub> and f=1 MHz

Video S2 Separation of *H. pluvialis* and *C. reinhardtii* at  $A=12.5 V_{pp}$  and f=1 MHZ

Video S3 Separation of *Euglena* and *Platymonas* at  $A=50 \text{ V}_{pp}$  and f=1 MHZ

Video S4 Separation of *Platymonas* and *Dunaliella salina* at A=27.5 V<sub>pp</sub> and f=1 MHZ

Video S5 Separation of live and dead *Euglena* at  $A=50 \text{ V}_{pp}$  and f=1 MHZ

### Reference

- C. Lu, J. Xu, J. Han, X. Li, N. Xue, J. Li, W. Wu, X. Sun, Y. Wang, Q. Ouyang, G. Yang and C. Luo, *Lab Chip*, 2020, 20, 4094-4105.
- 2. D. Yin, A. Shi, B. Zhou, M. Wang, G. Xu, M. Shen, X. Zhu and X. Shi, *Langmuir*, 2022, **38**, 11080-11086.
- 3. Y. Wang, J. Wang, X. Wu, Z. Jiang and W. Wang, *Electrophoresis*, 2019, 40, 969-978.
- Y. Wang, J. Wang, Y. Wu and J. Dong, *Journal of Chemical Technology & Biotechnology*, 2021, 96, 2228-2237.
- 5. D. Jiang, L. Wang, Y. Liu, X. Huo, J. Lin and L. Li, *J Sep Sci*, 2022, **45**, 3900-3908.
- 6. H. Hadady, D. Redelman, S. R. Hiibel and E. J. Geiger, AIMS Biophysics, 2016, 3, 398-414.