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Jean-Baptiste Mannevillec, Jean-Louis Viovya, Matthieu Pield , Jean-Yves Piergae, Kyohei
Terao∗ f , and Catherine Villard∗b‡

a Université PSL, Institut Curie and Institut Pierre Gilles de Gennes, Physico-Chimie
Curie, CNRS UMR168, F-75005 Paris, France.
b Université Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, CNRS
UMR 8236, F-75013, Paris, France.
c Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), CNRS UMR
7057, 10 rue Alice Domon et Léonie Duquet, F-75013 Paris, France.
d Université PSL, Institut Curie and Institut Pierre Gilles de Gennes, CNRS UMR144,
F-75005 Paris, France.
e Département d’Oncologie Médicale de l’Institut Curie et Université Paris Cité.
f Kagawa University, Nano-Micro Structure Device Integrated Research Center, 2217-
20 Hayashi-cho, Takamatsu 761-0396, Japan.

1

Electronic Supplementary Material (ESI) for Lab on a Chip.
This journal is © The Royal Society of Chemistry 2024



Supplementary information

1 - Effective radius of the constrictions
The equations used to derive rheological parameters1 have been established in the case of a cylindrical pipette of radius R. To be
applied to the rectangular constriction of the Pachinko microfluidic device, R needs to be replaced with an effective radius Re f f

that is a function of the constriction width w and height h. Referring to the theory for rectangular channels established in2, the
expression for Re f f is given by:
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With w = 6µm the width and h = 15µm the height of the rectangular channel, applying Eq.1 and Eq.2 yields Re f f = 6.27µm.

2 - Profile of the constrictions
Upon fabrication of the wafer molds, the height of structures were checked using a mechanical profilometer (dektak 6M, Veeco). We
also used an optical profilometer (NT9100, Veeco) to obtain 3D imaging of constrictions (Fig. S1a-b). Diffraction during exposure
limits the achievable resolution of structures obtained with photolithography. The actual width of the constriction ranges from ≈
5µm at the top to ≈ 7 µm at the bottom of the structure. We consider this distribution to be acceptable, and will refer to the
constriction as a rectangle of 6 µm width. These results were confirmed by the observation of the structures in the PDMS chip by
scanning electron microscopy.

Figure S1 - Detail of a constriction a) 3D visualisation of a constriction height measured on the wafer used to produce the microfluidic chips,
using an optical profilometer (NT9100, Veeco). b) Detail of the profile of the cross-section of a constriction at its narrowest point. Due to
photolithography limitations, constriction width ranges from 7µm at the base to 5µm at the top. Thus for simplification, the constriction was
considered as a rectangle of 6µm width. c) Scanning Electron Microscopy view of the constriction and single cell nests trap chamber, taken on a
PDMS chip before bonding to the fluorodish.
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3 - Numerical simulations

Figure S2 - Numerical simulations performed on the Pachinko device. a) Representation of the mesh used for finite elements calculations. Meshing
was refined close to the constriction and single cell nests (minimal element size was set to 0.172µm). b) Representation of the pressure profile
within the device. Inlet 1, outlets 2 and 3 pressure were set respectively to 12, 8 and 0 mbar. Most of the pressure drop is located on the
constrictions. The shallow channel approximation was used to take into account the effect of the channel height on the pressure profile. c) The
middle constriction was closed to mimic the effect of a cell within a constriction. The resulting pressure differences applied between the front and
back of the cell is approximately ∆Ph ≈5.76 mbar. Residual pressure drop located in the single cell nests is ≈0.1 mbar, and thus can be neglected
in front of the pressure drop applied within the constriction.
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Table S2 - Pressure Differences ∆P as a function of the possible configurations of constrictions occupancy by cells. Values are obtained through
numerical simulations with Comsol (see Fig.S2). The plot for the configuration "1 cell in the middle constriction" is represented on Fig.S2c.
Experimentally we observed that in average only one constriction was used at the same time, for calculations purposes we’ll then use ∆P = 6 ±
0.25 mbar.

∆P in constriction
Left Middle Right

Nb cells in constrictions

1 cell

6.19mbar open open

open 5.76mbar open

open open 5.86mbar

2 cells

open 7.35mbar 7.46mbar

7.50mbar open 7.22mbar

7.80mbar 7.40mbar open

3 cells 10.15mbar 10.0mbar 9.88mbar

4 - Membrane curvature-induced pressure differences
As the cell membrane is being curved in the constriction, a pressure difference ∆Pc is created which opposes cell deformation and
counteracts the hydrostatic pressure difference ∆Ph. Laplace law defines the relation between the inside and outside pressures
around a curved membrane as:

∆P = Pinside −Poutside = τ0

(
1
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)
where τ0 is the membrane tension, and R1 and R2 are the principal curvature radii. We apply this relation at the back and front of
the cell:
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where Rback and R f ront are the radii of the back and front radii of the cell in an horizontal plane, and Rh the inverse of the vertical
curvature defined between the floor and ceiling of the microchannel of height h. We define the resulting pressure difference created
by the membrane curvatures ∆Pc as3,4:

∆Pc = Pback
outside −P f ront

outside = τ0

(
1

R f ront
− 1

Rback

)
Tsujita and al. gives values of cortical tensions ranging from ≈ 50 pN/µm for MDA-MB-231 cells to ≈ 100 pN/µm for MCF-7
cells5. We take an estimate of τ0 ≈ 50 pN/µm for the following calculations. We found that ∆Pc ≈ 0.05 mbar at the cell entry and
decreases as the cell progresses in the constriction (Fig.S3). Thus we can neglect in the following the pressure difference induced
by membrane curvature and consider that cells experience in the constriction a hydrostatic pressure drop of ∆Ph ≈ 6 mbar. In fact,
∆Pc represents the minimal pressure required for the cell to enter the constriction. Slowly increasing the pressure to determine the
pressure threshold required for the cell to enter the constriction would result in a measure of the cell cortical tension τ0.
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Figure S3 - Evolution of the cell shape as it crosses the constriction and of the pressure difference induced by membrane curvature. a) Outline
of the cell presented Fig.2 and Fig.4b as it goes through the constriction. Each image represenetd here is separated by 20ms. b) The radius of
curvature was calculated for each point of the cell outline, using the code developed in Driscoll et al. 6. The color map represents the curvature
C = 1/R in µm−1. c) Drawing of the front and back curvature radius. The front (resp. back) of the cell was defined as the 10% of the points with
the highest (resp. lowest) y-coordinate in the shape outline. Mean over these points was used to determine front and back radii of the cell. d)
Front and back radii were plotted as the cell progresses through the constriction (x-axis is the index of the image of the cell represented above).
The resulting pressure difference ∆Pc induced by membrane curvature is represented on the right y-axis.

5 - Cell diameters

Figure S4 - Cell diameters. The median value is given for each cell line. Interestingly, SK-BR-3 are slightly smaller than the other two cell lines.
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6 - Scatter and contour plots

Figure S5 - Scatter plot of arrest time in MCF-7, SK-BR-3 ans MDA-MB-231 cell lines. To compare between cell lines independently of size
effects, density plots were sampled on a sliding bin of size 1µm.

7 - Comparison of fits
The normalized deformation data were fit successively with one, two, and three phase decays fits in order to determine the number
of exponential decays to be considered. The corresponding fit equations in GraphPad Prism were the following:

• One Phase Decay:
Y=(Y0 - Plateau)*exp(-X/Tau) + Plateau

• Two Phase Decay:
SpanFast=(Y0-Plateau)*PercentFast*.01
SpanSlow=(Y0-Plateau)*(100-PercentFast)*.01
Y=Plateau + SpanFast*exp(-X/TauFast) + SpanSlow*exp(-X/TauSlow)

• Three Phase Decay:
YFast=(Y0-Plateau)*PercentFast*.01*exp(-X/TauFast)
YSlow=(Y0-Plateau)*PercentSlow*.01*exp(-X/TauSlow)
YMedium=(Y0-Plateau)*(100-PercentFast - PercentSlow)*.01*exp(-X/TauMedium)
Y=Plateau + YFast + YMedium +YSlow

Alternatively, a power law fit was considered.

• Power Law:
Y=(X/X0)(̂-n)+C

We determined that three phase decay was the best fit to represent the recovery. Addition of more exponential did not increase
the quality of the fit, as the software was unable to compute a fourth caracteristic time. From the parameters computed here (Y0,
Plateau, PercentFast, TauFast, PercentSlow, TauSlow, PercentMedium, TauMedium), we define as presented in the main text as the
following:

• % slow = (PercentSlow)*(Y0-Plateau)

• % medium = (100-PercentFast-PercentSlow)*(Y0-Plateau)

• ΦV E = (% slow + % medium)
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Figure S6 - Fitting of whole cell shape recovery after deformation. For each cell line, the fitting curves obtained with one, two and three phase
decays, as well as the fitting curve obtained with the power law were overlayed on the individual cells data points. The parameters obtained for
each line are reported in the table on the right. Parameters used in Table 2 are boxed in red.
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8 - Treatment of MDA-MB-231 cells with cytoskeletal drugs

Figure S7 - Treatment of MDA-MB-231 cells with Latrunculin A and Y27632. (top) Treatment with 0.5, 2 and 5µM LatrunculinA. 0.5µM was
selected as it induced depolymerisation of the actin cytoskeleton in both adherent and suspension conditions. (bottom) Treatment with 10, 30
and 100µM Y27632. A concentration of 30µM was selected as it increased adherent cells spreading (a proxy for diminution in contractility and
thus acto-myosin activity).
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9 - Comparison of the recovery dynamics of MDA-MB-231 cells after passing through 6x15 and 9x9 µm2 constrictions

Figure S8 - Recovery of a MDA-MB-231 cell deformed in a square 9x9 µm2 constriction. Elastic recovery is also present in isotropic square
constrictions 9x9 µm2 of similar section area as 6x15 µm2 constrictions.

10 - Arrest time of MDA-MB-231 cells submitted to Y-27 and LatA

Figure S9 - Box plot of arrest time distribution of WT, Y-27 30 µM and LatA 0.5 µM treated MDA-MB-231 cells. Displayed value represents the
median.
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NOTES AND REFERENCES NOTES AND REFERENCES

11 - Expression levels of p-MLC2 by Western blot

Figure S10 - Western Blots for p-MLC2 (phospho-Myosin Light Chain 2). Adherent (adh.) cells were lysed in the culture dish, while suspended
(susp.) cells were lyzed 30min after harvesting.

12-14 - Raw data files
These files correspond to Fig. 3 and Fig.6c (Supp.12, Data Cells.xlsx), Fig. 5 (Supp. 13, Data Deformation.xlsx) and Fig. 6d (Supp.
14, Data Recovery.xlsx).

Notes and references
1 P. M. Davidson, G. R. Fedorchak, S. Mondésert-Deveraux, E. S. Bell, P. Isermann, D. Aubry, R. Allena and J. Lammerding, Lab on a Chip, 2019, 19, 3652–3663.

2 Y. Son, Polymer, 2007, 48, 632–637.

3 E. Evans and A. Yeung, Biophysical Journal, 1989, 56, 151–160.

4 J. Dupire, P. H. Puech, E. Helfer and A. Viallat, Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14798–14804.

5 K. Tsujita, R. Satow, S. Asada, Y. Nakamura, L. Arnes, K. Sako, Y. Fujita, K. Fukami and T. Itoh, Nature Communications, 2021, 12, 5930.

6 M. K. Driscoll, C. McCann, R. Kopace, T. Homan, J. T. Fourkas, C. Parent and W. Losert, PLoS Computational Biology, 2012, 8, e1002392.

10


