A Vascularized Microfluidic Model of the Osteochondral Unit for Modeling Inflammatory

Response and Therapeutic Screening.

Kevin D. Roehm¹, Irene Chiesa^{2,3}, Dustin Haithcock¹ Riccardo Gottardi²⁻⁸, and Balabhaskar

Prabhakarpandian¹

¹CFD Research Corporation, Huntsville, USA

²Department of Information Engineering and Research Center "Enrico Piaggio", University of Pisa, Italy

³Division of Otolaryngology, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA

⁴Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA

⁵Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA

⁶Division of Pulmonary Medicine, Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA

⁷Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA

⁸Ri.MED Foundation, Palermo, Italy

Corresponding Author:

Kevin D. Roehm CFD Research Corporation 6820 Moquin Dr. N.W. Huntsville, AL 35806 Ph: 256-715-9408 Email: kevin.roehm@cfd-research.com

Supplemental Information

Supplementary Figure 1. CAD design of the microfluidic chip with key dimensions.

Supplementary Figure 2. Fabrication of microfluidic chip showing photomask (A), SU-8 master mold (B), and fabricated PDMS chip (C).

Supplementary Figure 3. Validating microfluidic architecture. A) validation of PDMS-glass bonding and lack of obstructions in channels. B) validation of pore size and barrier integrity with fluorescent polystyrene beads (blue and red are 2μm, green are 4 μm). C) Zoom in of Red 2 μm particles passing through the barrier. D) Zoom in of Blue 2 μm particles passing through the barrier.