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Supplementary Movie Legends

Supplementary Movie 1. Selective trapping of single cells using addressable electroactive
trap-wells. The selected SiO, trap-wells, indicated by yellow dotted circles, were activated by
applying an electrical potential of 10 Vpp at 8 MHz to the electrodes at t = 7 sec. The cells
passing over the activated trap-wells were efficiently trapped by DEP force. However, cells
that passed over deactivated wells were not trapped. Once the single cells were trapped into the
SiO, trap-wells, a second cell cannot be trapped into the same trap-wells, allowing highly

efferent single-cell trapping.

Supplementary Movie 2. Selective release of trapped single cells. After trapping PC3 cells
by activating all SiO; trap-wells with an electrical potential of 10 Vpp at 8 MHz, selected trap-
wells, indicated by grey dotted circles, were deactivated at t = 14 sec, and the cells in those
wells were immediately released. However, cells in the still-activated trap-wells, indicated by

yellow dotted circles, were not released.

Supplementary Movie 3. Representative PC3 cell trapping using DSCR. The suspension
of PC3 cells was introduced into the microfluidic channel at a flow rate of 4 uL min™'. PC3 cells
were trapped into the trap-well 1 by applying a 15 Vpp sinusoidal electric potential at § MHz

to the electrode 1.



Supplementary Methods

When a dielectric particle is subjected to a non-uniform electric field, dielectrophoresis (DEP)
force is exerted on the particle. The DEP force (Fpgp) acting on the spherical cell of a radius

(a) can be approximated by
Fpep = 2me,a®Re[K(2nf)]V|E|?

where €, and E are permittivity of suspending medium and applied electric field, respectively.
Clausius-Mossotti (CM) factor, K (2rf), which represent the relative permittivity between the

cell and the suspending medium, for the spherical shell model' is
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where €* = € + # j is complex permittivity, and j = v—1. g, f and d,, are conductivity,

frequency of the applied electric potential, and thickness of the cell membrane, respectively.
Subscripts cell and e represent cell and the suspending medium, and i and m represent internal
and membrane of the cell, respectively.

When a cell is exposed to an external a.c. electric field, a transmembrane potential is

induced. The maximal induced transmembrane potential®, Vi, (f) is
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where G, represents surface conductance. If V;,,, exceeds a critical value, permeable pores are
formed on the cell membrane, which could induce electroporation of the cell membrane.

To determine proffer frequency of the electric field, relative DEP force, Re[K (27 f)],
is compared with relative transmembrane potential [1 + % + di (om + 2nfen)) (O'i + % +

Gs
oe0ia
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)] as shown in Supplementary Fig. S2 with typical cell parameters of mammalian cells

(Supplementary Table).



Supplementary Table

Supplementary Table. Typical cell parameters® used for the calculation.

Unit Internal (i) | Membrane (m) | External (e)

Conductivity o Sm'! 0.5 3x 10 0.02
Permittivity € € 50 8 80
Surface conductance | G S m? 10

Membrane thickness | d,; | m 8 x 107

Cell Radius a m 7.5 %10
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Supplementary Fig. S1. Schematic illustration of device fabrication. (A) A Si/SiO2 structure

fabrication using the back-end of line process. (B) Fabrication of PDMS microfluidic channel.

(C) Integration of the Si/SiO2 structure and PDMS microfluidic channel.
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Supplementary Fig. S2. Estimated frequency dependence of relative DEP force (Re[K (21 f)])
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and relative transmembrane potential ([1 + pp + ™ (om + 2nfenj) (0‘1 + 700 + Geaia)] ).
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