
1 
 

Supporting Information 
 
 

Real-Time Detection and Classification of PFAS using Dynamic Behaviors at Liquid-Liquid 
Interfaces  

Baishali Barua, Laura K. Dunham, Aakanksha Gadh, and Suchol Savagatrup* 

Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James 
E. Rogers Way, Tucson, Arizona 85721 

 
* Authors to whom correspondence should be addressed: S.S. (suchol@arizona.edu) 
 

Keywords: sensors, microfluidics, Janus droplets, interfacial tension, PFAS  

Electronic Supplementary Material (ESI) for RSC Applied Interfaces.
This journal is © The Royal Society of Chemistry 2024

mailto:suchol@arizona.edu


2 
 

Table of Contents 

1. Chemicals .................................................................................................................................... 3 

2. Preparation of synthetic groundwater ......................................................................................... 3 

3. Fabrication of Janus droplets ...................................................................................................... 4 

4. Sensing mechanism of Janus droplets ......................................................................................... 6 

5. Fabrication of PDMS microfluidic sensing setup ....................................................................... 7 

6. Classification model using Python ............................................................................................ 10 

7. Real-time emission responses of PFOS in different concentration range ................................. 12 

8. Real-time emission responses of PFOA, PFBS, and PFBA ..................................................... 13 

9. Principal Component Analysis ................................................................................................. 14 

10. Random Forest classification algorithm ................................................................................. 16 

11. Linear Regression analysis for quantifying PFAS concentrations ......................................... 20 

12. Real-time emission responses of PFAS binary mixtures ........................................................ 24 

13. Real-time emission responses of the four PFAS in SGW ....................................................... 25 

 

 

 

 

 

 

 



3 
 

1. Chemicals 

Toluene, perfluorotributylamine (FC-43), perfluorooctane sulfonic acid (PFOS), and 

perfluroocatanoic acid (PFOA) were obtained from Sigma-Aldrich. Capstone FS-30 (25% solids 

in water, “Capstone”) was obtained from Chemours and 2-trifluoromethyl-3-

ethoxyperfluorohexane (HFE-7500) was obtained from Santa Cruz Biotechnology. 

Perfluorobutane sulfonic acid (PFBS) was purchased from TCI and perfluorobutanoic acid (PFBA) 

was obtained from Thermo Fisher. The fluorescent dye perylene (≥ 99%) was purchased from 

Fisher Scientific. Triton X-100 (“Triton”) was obtained from Chem-Impex Int’l Inc. Negative 

photoresist SU-8 2150 was purchased from Fisher Scientific. Sylgard 184, a two-component 

system of poly(dimethylsiloxane) base and a curing agent, was obtained from Dow Chemical. All 

chemicals were used as received. 

2. Preparation of synthetic groundwater 

The synthetic groundwater (SGW) used in this study was chosen to replicate the 

characteristics of local water sources in Tucson, Arizona. We followed the formulation reported 

by Smith et al.1 for synthetic hard water. We added the following chemicals listed in Table S1 to 

Milli-Q water to prepare SGW. The chemicals were acquired from Fisher Scientific and VWR and 

used without further purification. 

Table S1. List of chemical compounds used for SGW preparation in this study following the recipe reported 
by Smith et al.1 

Chemical compounds CAS# Concentration (mg L-1) 
Sodium sulfate [Na2SO4] 7757-82-6 28.06 
Sodium bicarbonate [NaHCO3] 144-55-8 22.68 
Potassium bicarbonate [KHCO3] 298-14-6 7.52 
Potassium dihydrogen phosphate [KH2PO4] 7778-77-0 4.08 
Calcium carbonate [CaCO3] 471-34-1 83.2 
Calcium chloride hexahydrate [CaCl2.6H2O] 7774-34-7 74.9 
Calcium nitrate tetrahydrate [Ca(NO3)2.4H2O] 13477-34-4 11.82 
Magnesium sulfate heptahydrate [MgSO4.7H2O] 10034-99-8 100.4 
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3. Fabrication of Janus droplets 

We employed an emulsification technique following the methodology outlined by Zarzar 

et al. to create monodispersed complex droplets consisting of hydrocarbon oil (H-oil) and 

fluorocarbon oil (F-oil) phases.2 We used 0.1 wt% Triton solution as the continuous phase. The 

dispersed phase comprised of toluene with dissolved perylene as H-oil and a 9:1 mixture of HFE-

7500 and FC-43 as F-oil. By maintaining the dispersed phase above the upper critical temperature 

(Tc = 32°C), H-oil and F-oil were miscible during emulsification. The ratio of HFE-7500 to FC-

43 was selected to modulate the critical temperature (Tc) for miscibility and to ensure complete 

phase separation at room temperature.3 We used the Dolomite Microfluidics setup, placed in an 

incubator to maintain a temperature above Tc (>32°C) during the fabrication process. Two Mitos 

P pressure pumps controlled the flow rates of the continuous and dispersed phases, into the flow-

focusing chip, Telos 2 Reagent Chip (50 μm). Following emulsification, the droplets were cooled 

down to room temperature, resulting in double emulsions with equal volumes of H-oil and F-oil 

due to phase separation. We collected optical microscope images and analyzed the droplet 

diameter and dispersity using a MATLAB code. 

We chose monodispersed droplets to minimize the influence of droplet size variations on 

optical properties, as reported by Zeininger et al.3 Specifically, the normalized change in optical 

properties and emission intensity remained consistent across droplets with different diameters, 

depending only on internal morphology. However, the absolute emission intensity range was 

influenced by droplet size, highlighting the potential for signal confusion when collecting 

emissions from polydispersed samples without internal references. Additionally, a droplet 

diameter of approximately 50 µm was chosen because of the ease of integration into microfluidic-

based sensors and sufficient stability during the duration of the experiment. 
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Figure S1. Top-view optical micrograph of monodispersed droplets fabricated using Dolomite 
Microfluidics Setup. Histogram of droplet diameter and standard deviation were analyzed from optical 
micrographs using a MATLAB code.  

After emulsification of complex droplets in a solution of Triton, we adjusted the surfactant 

composition (Triton and Capstone) in the continuous phase to balance the interfacial tensions (𝛾! 

and 𝛾") in order to generate Janus droplets. We achieved the Janus state at fCapstone = 0.35. The 

value fCapstone is a proxy for the ratio between and 𝛾! and 𝛾", and is defined as the ratio of the 

concentration of Capstone to the combined concentration of Triton and Capstone: fCapstone = 
[$%&'()*+]

[-./()*]0[$%&'()*+]
.  We confirmed the Janus state of droplets by capturing top-view and side-view 

optical micrographs. 
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4. Sensing mechanism of Janus droplets 

To determine the relationship between droplet morphology and optical emission, we 

deposited a single layer of monodispersed Janus droplets in 350 µL of surfactant solutions. A 

bifurcated optical fiber was placed above the droplet layer to illuminate the droplets and capture 

emitted light (Figure S2a). The distance between droplets and the optical fiber was consistently 

maintained at 14 mm during data collection. The optical fiber transmits UV light at λ = 405 nm to 

excite the fluorescent dye and captures emission intensity at λ = 475 nm (one of the characteristic 

wavelengths of perylene). The normalized emission data exhibited peak intensity at a Capstone 

fraction (fCapstone) near 70% (Figure S2b). We normalized the raw emission intensities to transform 

all dataset into a similar scale which helped to effectively compare between values obtained from 

different test runs. Also, it helped to minimize the effects of external factors, such as slight 

variations in number of droplets, exposure of ambient light, and slight deviation in the raw values 

of emission intensity.    

 
Figure S2. (a) Schematic representation of sensing mechanism of Janus droplets. (b) Light curve: emission 
intensity as a function of droplet morphology. Droplet morphology was controlled by altering the ratio of 
Triton and Capstone.  
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5. Fabrication of PDMS microfluidic sensing setup 

PDMS microchips were patterned using conventional soft lithography.4–6 First, silicon 

wafers were cleaned using a piranha solution (H2SO4:H2O2, 3:1 ratio) and subsequently dried with 

clean air. The wafers were then heated on a hot plate at 95℃ for 15 minutes. A thin film of SU-8 

2150 photoresist was deposited using a spin coater at 3000 rpm for 1 minute. The coated wafers 

were baked on a hot plate at 65℃ for 25 minutes, followed by 95℃ for 10 minutes. Exposure of 

UV light (λ = 365 nm) through a negative mask was then employed to pattern the photoresist. 

Subsequently, the wafers were baked again (65℃ for 25 minutes, 95℃ for 10 minutes, and 65℃ 

for 5 minutes) and washed with PGMEA (Propylene glycol monomethyl ether acetate) to remove 

unexposed SU-8, resulting in the formation of SU-8 molds upon rinsing with isopropyl alcohol. 

We then treated the patterned wafers with 1H,1H,2H,2H perfluorooctyl trichlorosilane (FOTS) to 

develop hydrophobic surface. After mixing a 10:1 weight ratio of PDMS base to curing agent, 

PDMS solution was poured onto the patterned silicon wafers, followed by immediate placement 

in a vacuum desiccator to eliminate trapped air bubbles. After curing at room temperature for 24-

36 hours, the cured PDMS replica was carefully peeled off from the wafer. Inlet and outlet holes 

were punched into the PDMS slab using disposable biopsy punches to achieve the desired 

microfluidic device design. Then the PDMS pieces were bonded to glass slides using an AutoGlow 

plasma system. Plasma treatment modified the surface chemistry, facilitating strong and permanent 

bonding between the PDMS with channels and the glass substrates, following thorough cleaning 

of both surfaces. 

The real-time sensing setup includes two syringe pumps, PDMS microfluidic module, and 

a bifurcated optical fiber linked to a UV light source and a spectrophotometer.7 We used two 

programmable syringe pumps to deliver the control solution (Triton and Capstone) and the PFAS 

solution (Triton, Capstone, and PFAS) through the microchannels at varying flow rates, durations, 

and flow ratios. We constructed three-stage PDMS microfluidic module comprising (1) a mixing 

channel, (2) a bubble trap, and (3) a sensing chamber, interconnected via PTFE tubes with an inner 

diameter of 0.5 mm. 
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Figure S3. Images of PDMS microchips made by soft lithography process to build the three-stage 
microfluidics module for real-time and continuous monitoring. 
 

The mixing channel was designed with serpentine microchannels to promote passive 

mixing of laminar flows. We confirmed effective mixing of two inlet streams of solutions at the 

outlet of the mixing channel under the experimental flow rates. Subsequently, the mixed outlet 

stream entered a vertical cylindrical-shaped microcavity, designed to trap air bubbles to prevent 

interference with measured fluorescence intensity or mechanical agitation of the droplets. The third 

module contains a cylindrical sensing chamber (diameter = 5 mm, depth of 3 mm), which 

accommodates a monolayer of Janus droplets and is linked to the inlet and outlet streams via a thin 

rectangular microchannel with a width of 0.5 mm and depth of 110 µm. Prior to each experiment, 

we flushed every PDMS module with 0.1 M NaOH solution and then rinsed it with Milli-Q water 

to ensure adequate hydrophilicity of the inner surfaces. We subsequently introduced a surfactant 

solution containing Janus droplets into the chamber to generate a single layer. For each experiment, 

constant total flow rate of 200 µL min–1 produced sufficiently fast response time (< 2 minutes) 

with minimal disruption to the droplet monolayer and minimum loss of droplets with the liquid 

flow.7 Here we observed a consistent time delay of 25 ± 3 seconds between the input flow and the 

achieving equilibrium emission intensity.  
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Figure S4. Real-time sensing setup of PDMS microfluidics with Janus droplets. 
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6. Classification model using Python 

We conducted Random Forest classification using the Python programming language. The 

following libraries and steps are followed to implement the algorithm. 

Step 1: Import necessary libraries 

• pandas: This library is used for data manipulation and analysis. It provides data structures 

and functions to work with structured data. 

• numpy: NumPy is a fundamental package for numerical computing with Python. It 

provides support for large, multi-dimensional arrays and matrices, along with a collection 

of mathematical functions to operate on these arrays. 

• sklearn: It is known as Scikit-learn, a machine learning library in Python. It provides 

simple and efficient tools for data mining and data analysis, including various machine 

learning algorithms and evaluation metrics. 

• matplotlib and seaborn: These libraries are used for data visualization. Matplotlib 

is a comprehensive library for creating static, animated, and interactive visualizations in 

Python. Seaborn is built on top of Matplotlib and provides a high-level interface for 

generating informative statistical graphics. 

Step 2:  Load and prepare data 

The dataset was loaded into a pandas DataFrame by reading the .csv file created earlier 

using the experimental outcomes.  

Step 3:  Split data into training and testing sets 

The dataset was split into training and testing sets by randomly selecting two out of three 

samples from each experimental configuration. This step is crucial for evaluating the model's 

performance.  

Step 4:  Train the Random Forest model 

The Random Forest classifier was initialized using RandomForestClassifier from 

sklearn.ensemble and the training data was fit. This step trains the model on the training 

dataset to learn patterns and relationships in the data. 
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Step 5:  Make predictions 

The trained model was used to make predictions on the testing dataset. The predict 

method of the Random Forest classifier is used to generate predictions based on the features of the 

test data. 

Step 6: K fold cross validation 

Three different training and testing splits were created and steps 4 and 5 were repeated on 

those splits. 

Step 7:  Evaluate model performance 

The outcomes of three model runs were aggregated to calculate accuracy and other 

performance metrics such as precision, recall, and F1-score using accuracy_score, 

classification_report, and confusion_matrix from sklearn.metrics. 

Visualization of the confusion matrix was done using seaborn and matplotlib. These steps 

help assess how well the model performed in predicting the PFAS class. 
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7. Real-time emission responses of PFOS in different concentration range 

By adjusting the concentration of control surfactants (Triton and Capstone), we could 

detect PFOS at different concentration ranges.8 As the emission intensities depend on the 

interfacial tensions, the sensitivity range can be tuned. We demonstrated the utility of three 

different sets of Janus droplets to detect PFOS in the total range of 5 μg L-1 to 200 μg L-1. We 

started with the first set of Janus droplets in 0.1 wt% Triton and 0.05 wt% Capstone and detected 

PFOS in the high concentration range of 120 to 200 μg L-1. Then to detect different ranges of PFOS 

concentrations, we fabricated a second set of Janus droplets in 0.01 wt% and 0.005 wt% Capstone 

to target medium range of PFOS (50 to 100 μg L-1) and a third set of Janus droplets in 0.001 wt% 

Triton and 0.0005 wt% Capstone for the low range of PFOS (5 to 40 μg L-1). The real-time 

emission intensity as the function of concentration for the high, medium, and low ranges of PFOS 

are shown in Figure S5 and 3b. We observed that the change in normalized emission intensities 

for the different PFOS concentration range are different.    

Table S2. List of PFOS detection range and control surfactant concentrations 

Range PFOS Concentration (μg L-1) Control Solution Concentration 

(Triton:Capstone) (wt%) 

1. High 120-200 0.1: 0.05 

2. Medium 50-100 0.01: 0.005 

3. Low 5-40 0.001: 0.0005 

 

 
Figure S5. Real-time emission responses for PFOS for concentration range of (a) 5 to 40 μg L-1 and (b)120 
to 200 μg L-1. 
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8. Real-time emission responses of PFOA, PFBS, and PFBA  

Similar to the PFOS detection shown in Figure 3b, we conducted experiments for the other 

three PFAS: PFOA, PFBS, and PFBA in the concentration range of 50 to 100 μg L-1. We used the 

second set of Janus droplets for the detection of all PFAS in this concentration range.  Then all the 

real-time, continuous emission data sets were normalized (Figure S6), and we extracted the four 

key features, which were employed for analysis and classification models.   

 
Figure S6. Real-time emission responses for PFOA, PFBS, and PFBA for concentration range 50 to 100 
μg L-1. 
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9. Principal Component Analysis  

Principal Component Analysis (PCA) serves as a method for reducing the dimensionality 

of extensive datasets.9 By transforming numerous variables into a smaller set that retains the 

majority of the original information, PCA simplifies data analysis without sacrificing substantial 

accuracy. It achieves this by creating principal components—new variables formed as linear 

combinations of the original variables. These components are designed to be uncorrelated, with 

the most significant information from the initial variables concentrated in the first few components. 

This reduction allows for easier exploration and visualization of the data, enhancing the efficiency 

of machine learning algorithms. Ultimately, the principal components extracted through PCA 

enable a clearer understanding of the data's structure and variability, making complex datasets 

more manageable and interpretable for better understanding. 

The steps involved for performing PCA are: 

Step 1: Normalization of dataset. 

𝑥*+1 =	
𝑥 − 𝜇
𝜎  

Step 2: Calculation of covariance matrix for the features in the dataset. 

𝐶𝑜𝑣(𝑥, 𝑦) = 	
∑(𝑥/ − 𝑥̅) ∗ (𝑦/ − 𝑦2)

𝑁 − 1  

Step 3: Calculation of eigen values and eigen vectors for the covariance matrix.  

Step 4: Sorting of eigen values and their corresponding eigen vectors. 

Step 5: Selection of top eigen values and formation of a matrix of eigen vectors. 

Step 6: Transformation of the original matrix. 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒	𝑚𝑎𝑡𝑟𝑖𝑥 ∗ 𝑡𝑜𝑝	𝑒𝑖𝑔𝑒𝑛	𝑣𝑒𝑐𝑡𝑜𝑟𝑠 = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑	𝑑𝑎𝑡𝑎 
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Figure S7. Variance percentage of principal components for PFAS classification. 
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10. Random Forest classification algorithm 

Random Forest (RF) is a general-purpose classification and regression method that 

combines several randomized decision trees and aggregates their predictions by averaging the 

outcomes.10,11 The algorithm is built based on the concept of the decision tree. A decision tree is a 

type of supervised learning algorithm that is commonly used in machine learning to model and 

predict outcomes based on input data. It is a tree-like structure where each internal node tests on 

attribute, each branch corresponds to attribute value and each leaf node represents the final 

decision or prediction. Even though a decision tree is one of the most powerful tools of supervised 

learning algorithms used for both classification and regression tasks, it has some limitations. The 

decision tree algorithm is slow and tends to overfit due to its reliance on a single tree structure 

driven by decision rules at each node. In contrast, the Random Forest algorithm addresses these 

shortcomings by generating multiple decision trees based on subsets of the data. This process 

unfolds in two phases: first, creating a random forest by generating N decision trees, and second, 

combining the collective predictions of each tree to make accurate predictions. We followed the 

following steps to perform RF classification: 

Step 1: Pick M data points at random from the training set. 

Step 2: Create decision trees for chosen data points (subsets). 

Step 3: Each decision tree will produce a result. Analyze it. 

Step 4: For classification and regression, accordingly, the final output is based on maximum 

likelihood for classification or averaging for regression. 

The model is implemented by using the Python programming and random forest classifier 

in the scikit-learn package with default parameters. Here we performed 3-fold cross-validation to 

ensure the robustness of the classification algorithm. A total of 60 datasets was split into training 

and testing sets in a 67/33 ratio, respectively. Since the dataset at each concentration consists of 

three data points, instead of the random split, we adopted a controlled split. At each training step, 

two out of three data points were selected for training and one data point was used for the testing. 

This process ensures that the model is trained to predict the PFAS class at different concentration 

levels. The classification report was generated after each training and testing phase which shows 

the performance metrices such as precision, recall, f1-score, and overall accuracy for both training 

and testing datasets. The result is summarized in the table below: 
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Table S3: RF classification results for the four PFAS 

Analyte  Average Training Results in % Average Testing Results in % 

Precision Recall 
f1-

score 
Accuracy Precision Recall 

f1-

score 
Accuracy 

PFOS 100 100 100 

100 

59 40 46 

77 
PFOA 100 100 100 94 100 97 

PFBS 100 100 100 100 100 100 

PFBA 100 100 100 53 67 59 

 

The average PFAS classification accuracy obtained is 77% where most of the reduction in accuracy 

was due to PFOS and PFBA misclassification. Further investigation of the confusion matrix 

reveals the classification model's tendency to misclassify PFOS and PFBA due to inherent 

similarities in the input features. Hence, the dataset was reanalyzed by repeating the steps described 

above by excluding PFOS and PFBA individually. In the former case, an accuracy of 100% was 

achieved, underscoring the model's proficiency in accurately classifying PFAS compounds 

excluding PFBA. In the latter case, where PFOS was excluded, the average accuracy reached 98% 

(Figures S8 and S9). This reinforced the model's capability to accurately label PFOS, PFOA, and 

PFBS by analyzing the four features derived from real-time data (Figures S8 and S9). 

Table S4: RF classification results for PFOS, PFOA, and PFBS 

Analyte Average Training Results in % Average Testing Results in % 

Precision Recall 
f1-

score 
Accuracy Precision Recall 

f1-

score 
Accuracy 

PFOS 100 100 100 

100 

100 100 100 

100 PFOA 100 100 100 100 100 100 

PFBS 100 100 100 100 100 100 
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Table S5: RF classification results for PFOA, PFBS, and PFBA 

Analyte Average Training Results in % Average Testing Results in % 

Precision Recall 
f1-

score 
Accuracy Precision Recall 

f1-

score 
Accuracy 

PFOA 100 100 100 

100 

94 100 97 

98 PFBS 100 100 100 100 100 100 

PFBA 100 100 100 100 93 96 

 

 
Figure S8. Confusion matrix for three trial runs excluding PFBA. 
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Figure S9. Confusion matrix for three trial runs excluding PFOS. 
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11. Linear Regression analysis for quantifying PFAS concentrations 

After identifying the PFAS type, to predict the concentration of identified PFAS we 

performed the multiple linear regression analysis. We used a linear regression model, which is 

widely used and provides an easy-to-interpret mathematical formula that can generate predictions. 

Multiple regression is an extension of linear regression models that allow predictions of systems 

with multiple independent variables. Multiple regression is specifically designed to create 

regressions on models with a single dependent variable and multiple independent variables. Here 

we adopted it to predict the PFAS concentration based on the input feature information. The 

mathematical model can be written as following equation:  

𝑦2)*2 =	𝛽3 + 𝛽"4	𝑥"4 + 𝛽"6	𝑥"6 + 𝛽"7	𝑥"7 + 𝛽"8	𝑥"8 + 𝜖 

Here 𝑦2)*2 is the predicted concentration of the analyte, which is a dependent variable, 𝛽3 

is the intercept, and  𝛽"4	, 	𝛽"6, 	𝛽"7, 	𝛽"8 are the coefficients of the corresponding explanatory 

variables (input features). 𝜖 represents the error, which is the deviation of the predicted value from 

the actual. The goal of the regression model is to determine the intercept and coefficients so that 

the sum of the square residuals is minimized.  

Before fitting the model, pairwise scatter plots and correlations were examined to 

determine whether linear regression is a good fit based on the data. Those revealed that a linear 

trend exists between the concentration and the input variables. After that, the regression models 

are fitted to determine the intercept and coefficients. The fitted regression models are then used to 

predict the concentration. The outcome of the regression models is summarized in the table below.  
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Table S6: Summary of Linear regression results for the four PFAS 

 
The table shows the intercept and coefficient values of the regression model for each PFAS, 

corresponding P-values, the coefficient of determination (R2), and the mean absolute error. The P-

value is a statistical number to conclude if there is a relationship between analyte concentration 

and the observed features. Here the P-value comes from a hypothesis test where the null hypothesis 

is the true value of the coefficients and intercept are equal to zero (no relationship) and vice versa 

for the alternate hypothesis (have relationship). The P-value is calculated based on the t-statistic 

where a low P-value (< 0.05) means that the coefficient is likely not to equal zero. On the other 

hand, a high P-value (> 0.05) means that we cannot conclude that the explanatory variable (F1, 

F2, F3, and F4) affects the dependent variable (concentration). The R2 value which signifies the 

goodness of fit (i.e., 1 means perfect fit) is almost 1 for all four models which means the linear 

regression model is a good fit for the dataset. An underlying assumption of the regression model 

is the normality of residuals. In order to validate that, the QQ plots were generated for each PFAS 

type which show that residuals for all models follow the normal distribution. The R2 values for the 

fitted line in QQ-plot vary from 0.88 to 0.96. The regression line for PFBA is not a good fit as 

three out of four coefficients show insignificant P-values even though the R2 value is high. Also, 

PFBA regression model shows the largest deviation from the normality of the residuals. This 

finding also reinforces the outcome from RF classification where PFBA is mostly misclassified. 

Additionally, the mean absolute error of the models for four PFAS ranges from 1.19 to 2.38 μg L-
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1 which means the predicted values are close to the actual values. Therefore, the regression model 

can predict concentration with higher accuracy.  

 

 
Figure S10. Regression lines for PFOS and PFOA. 
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Figure S11. Regression lines for PFBS and PFBA. 
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12. Real-time emission responses of PFAS binary mixtures 

 We tested interfacial behaviors of PFAS when they are in mixtures. We prepared equimolar 

mixtures for four different PFAS combinations in Milli-Q water. Following the same experimental 

procedure (square wave input), we collected real-time emissions at different ratios for each binary 

mixture of PFAS. We observed competition between the PFAS at the droplet interfaces, 

specifically long-chain mostly dominating the interfacial properties, which led to non-linear 

behavior of emission change during adsorption and desorption. 

 

Figure S12. Real-time emission responses for PFAS binary equimolar mixtures at different ratio. 
 

 
Figure S13. PCA plots for PFAS separation in binary mixtures prepared in Milli-Q water. (a) Pure PFAS 
and 1:1 binary mixture. (b) Pure PFAS and other ratio of binary mixtures. 
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13. Real-time emission responses of the four PFAS in SGW 

Next, we tested PFAS in SGW containing dissolved ions. We followed the same 

experimental procedure (square wave input) and collected real-time emission response for the four 

PFAS (from 50 to 100 µg L-1) in SGW. All four PFAS showed greater interfacial activity in the 

presence of cations. Then we performed both PCA and RF classification using the sensing data of 

PFAS in SGW. The confusion matrix generated utilizing the four key features of the four PFAS in 

the concentration range of 50 to 100 µg L-1. We observed that the classification accuracy (64%) is 

lower than the Milli-Q water matrix. This outcome and PCA plots suggest that PFAS interfacial 

behavior gets affected by ions present in the system which makes it challenging to classify. 

 
Figure S14. (a) Real-time emission responses of the four PFAS in SGW and Milli-Q water at 100 µg L-1. 
(b) RF classification outcome for PFAS (50 to 100 µg L-1) in SGW. 
 

 
Figure 15. PCA plots for PFAS separation in SGW. (a) for PFAS concentration of 100 µg L-1. (b) within a 
range of concentration for 50 to 100 µg L-1. 
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