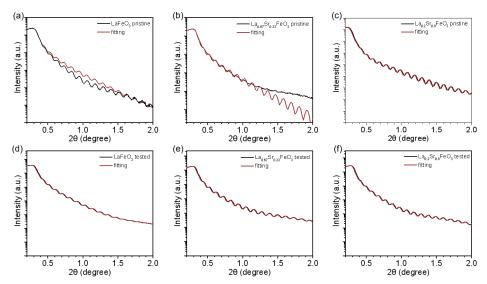
Supplementary Information (SI) for RSC Applied Interfaces. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Evaluating the electronic structure and stability of epitaxially grown Sr-doped LaFeO₃ perovskite alkaline O₂ evolution model electrocatalysts

Chuanmu Tian^a, Clément Maheu^{a,b}, Xiaochun Huang^c, Freddy E. Oropeza^d, Márton Major^e, Joachim Brötz^e, Marcus Einert^a, Wolfgang Donner^e, Kelvin Hongliang Zhang^c, Jan P. Hofmann^{a*}

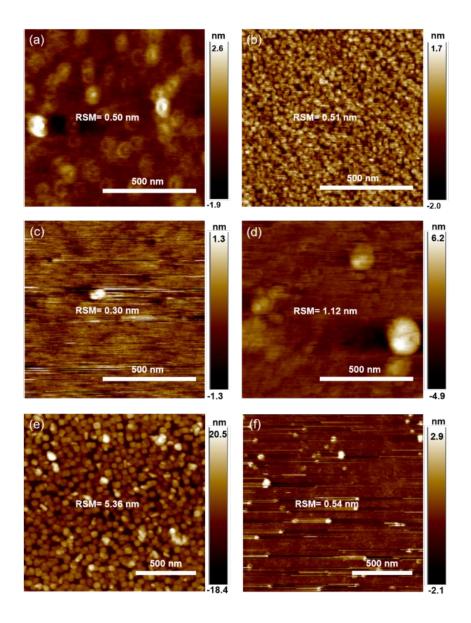
Corresponding author e-mail address: hofmann@surface.tu-darmstadt.de


^a Surface Science Laboratory, Department of Materials- and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.

^b Nantes Université, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France.

^cState Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Siming South Street 422, Xiamen 361005, P. R. China.

^d Photoactivated Processes Unit, IMDEA Energy Institute, Parque Tecnológico de Móstoles, Avda. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain.


^e Department of Materials- and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße 2, 64287 Darmstadt, Germany.

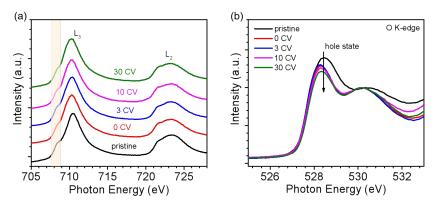
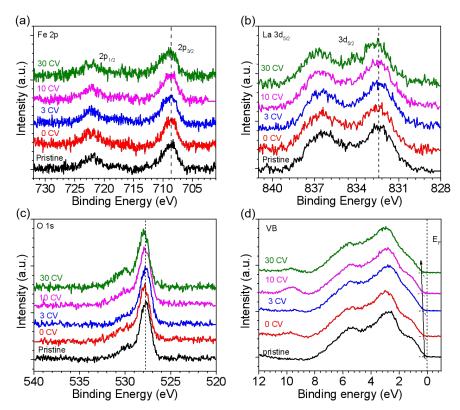

Figure S1. XRR experimental results (black curves) and the corresponding fitted results (red curves). (a) pristine LFO, (b) LSF-0.33 and (c) LSF-0.8. The XRR results of La_{1-x}Sr_xFeO₃ (x = 0, 0.33, 0.8) are fitted by the XRR fitting software ANALYSE from RayfleX. The thickness of the layer is correlated to the distance of the Kiessig fringes, which result from interference of the X-ray beams reflected on the film surface and on the interface to the substrate or the next film below. Even though the intensities between the measurement and the fitted curves do not fit very well, the thickness of the layer can still be calculated very precisely as long the maxima and minima of the oscillations (Kiessig fringes) in the measurement and the fit are at the same 2 Theta angles.

Table S1. XRR experimental fitting parameters of LFO, LSF-0.33, and LSF-0.8 before (pristine) and after 30 CV cycles.


	LFO		LSF-0.33		LSF-0.8	
	Pristine	After 30 CV	Pristine	After 30 CV	Pristine	After 30 CV
Crystalline Laye	r 37.5 ± 0.5	36.9 ± 0.3	38.6 ± 0.2	35.6 ± 0.4		38.9 ± 0.3
Thickness (nm)						
Amorphized Laye	r	1.5 ± 0.4		2.0 ± 0.3	39.2 ± 0.2	1.9 ± 0.4
Thickness (nm)						
XRR layer models	One layer	Two layers	One layer	Two layers	One layer	Two layers
Roughness XRI	R 0.61	0.69	0.67	0.82	1.73	0.41
(nm)						
Roughness AFN	1 0.5	0.51	0.30	1.12	5.36	0.54
(nm)						

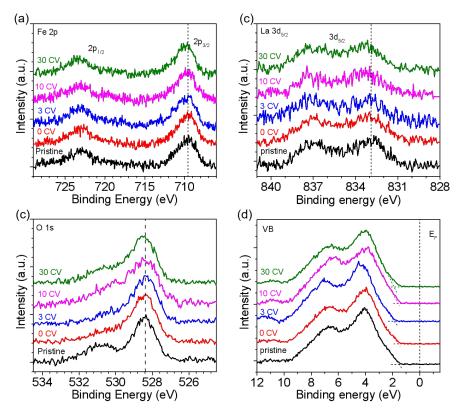

Figure S2. AFM images of La_{1-x}Sr_xFeO₃ thin films in pristine state and after 30 CV cycles. (a) Pristine LaFeO₃, (b) LaFeO₃ after 30 CV, (c) pristine La_{0.33}Sr_{0.67}FeO₃, (d) La_{0.33}Sr_{0.67}FeO₃ after 30 CV, (e) pristine La_{0.2}Sr_{0.8}FeO₃ and (f) La_{0.2}Sr_{0.8}FeO₃ after 30 CV.

Figure S3. NEXAFS spectra of La_{0.2}Sr_{0.8}FeO₃ with different CV cycles. (a) Fe L_{2,3}-edge and (b) O K-edge. The yellow bars in Figure S3a indicate the changes in the characteristics energy range of Fe³⁺ and Fe⁴⁺ at 708 eV under different CV cycles.

Figure S4. SXPS of La_{0.67}Sr_{0.33}FeO₃ with kinetic energy constant at 550 eV. (a) Fe 2p, (b) La 3d, (c) O 1s and (d) VB spectra with different CV cycles.

Figure S5. SXPS of La_{0.2}Sr_{0.8}FeO₃ with kinetic energy constant at 550 eV. (a) Fe 2p, (b) La 3d, (c) O 1s and (d) VB spectra with different CV cycles.