Electronic Supplementary information

Oxalate-assisted Fe_2O_3 surface functionalization of nanosized $MgMn_2O_4$ and α -MnO₂ cathodes for rechargeable magnesium batteries

Masanao Ishijima,^{a*} Arisa Omata,^a Kiyoshi Kanamura,^a Toshihiko Mandai,^b Xiatong Ye,^c Tetsu Ichitsubo,^c and Koichi Kajihara^{a*}

- *a* Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
- *b* Research Center for Energy and Environmental Materials (GREEN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- c Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.

*Corresponding author

Masanao Ishijima, Email: ishijima@tmu.ac.jp

Koichi Kajihara, Email: kkaji@tmu.ac.jp

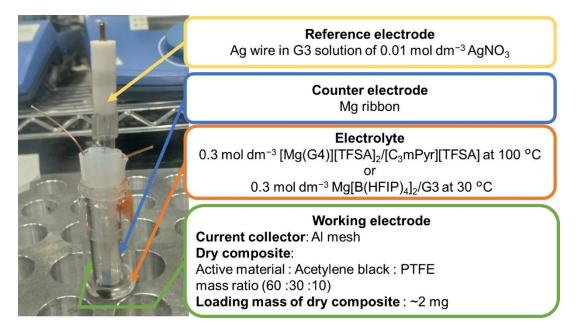


Fig. S1 Photgraph of a three-electrode cell for electrochemical measurements.

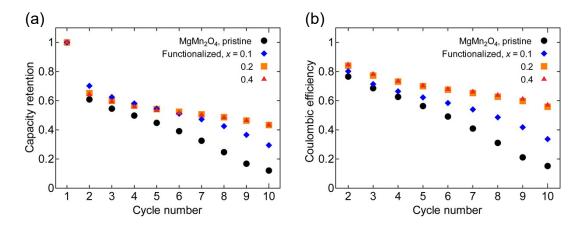


Fig. S2 (a) Capacity retention and (b) Coulombic efficiency of dry composite cathodes of pristine and Fe₂O₃-functionalized MgMn₂O₄ in 0.3 mol dm⁻³ [Mg(G4)][TFSA]₂/[C₃mPyr][TFSA] at 100 °C.

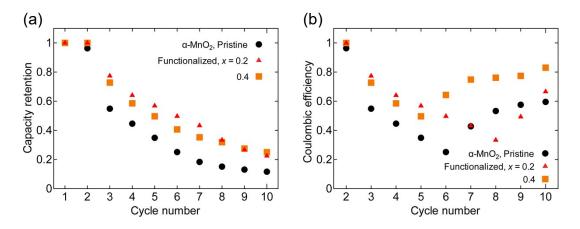


Fig. S3 (a) Capacity retention and (b) Coulombic efficiency of dry composite cathodes of pristine and Fe₂O₃-functionalized α -MnO₂ in 0.3 mol dm⁻³ [Mg(G4)][TFSA]₂/[C₃mPyr][TFSA] at 100 °C.



Fig. S4 (a) Capacity retention and (b) Coulombic efficiency of dry composite cathodes of pristine and Fe₂O₃-functionalized α -MnO₂ with in 0.3 mol dm⁻³ Mg[B(HFIP)₄]₂/G3 at 30 °C.