Supporting Information

A phosphite derivative with stronger HF elimination ability as an additive for Li-rich based lithium-ion batteries at elevated temperatures

Xiangzhen Zheng^a, Tao Huang^a, Ying Pan^a, Yongwei Chen^a, Mingdeng Wei^{b*}, Maoxiang Wu^{a *}

^a Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China

^b Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou 350002, P. R. China

E-mail: mxwu@fjirsm.ac.cn; Tel. / Fax: +86-591-6317 3560

Fig. S1 The preparation process of (a) $Li_{1.144}Ni_{0.136}Co_{0.136}Mn_{0.544}O_2$ electrodes and (b)

MCMB electrodes.

DMC	Х	Y	Z	DMC ⁺	X	Y	Z
С	-0.035873	0.533452	0.000042	C	-0.022381	0.439789	0.00006
0	-0.666624	1.57496	0.000123	0	0.625994	1.57121	-0.00007
0	1.300946	0.526488	0.000024	0	-1.291926	0.509705	0.000088
0	-0.565945	-0.69536	-0.000036	0	0.625578	-0.661547	0.000051
С	2.024512	-0.729259	-0.00009	C	-2.106963	-0.73716	-0.000067
Н	1.786073	-1.304994	-0.89659	Н	-1.875687	-1.295358	0.905257
Н	3.075746	-0.442996	-0.000095	Н	-3.126338	-0.362651	-0.000364
Н	1.786119	-1.305128	0.896336	Н	-1.875215	-1.295494	-0.905185
С	-2.011279	-0.768601	-0.000028	C	2.117107	-0.72358	-0.000016
Н	-2.239916	-1.833535	-0.000195	Н	2.31701	-1.790656	-0.000009
Н	-2.409581	-0.287944	0.89573	Н	2.478192	-0.242575	-0.907418
Н	-2.409611	-0.287655	-0.895617	Н	2.478293	-0.242505	0.907306

Table S1 Cartesian coordinates of the optimized structures of DMC and DMC^+ .

EC	X	Y	Z	EC^+	Х	Y	Z
С	-0.842138	0	0.000001	C	0.760756	0	-0.000002
0	-0.080916	1.109178	0.097178	0	0.117185	-1.105388	0.092558
0	-2.050826	0	-0.000002	0	2.056515	0	0.000004
0	-0.080915	-1.109178	-0.097174	0	0.117184	1.105387	-0.092567
C	1.312916	0.75853	-0.10785	C	-1.331571	-0.75841	-0.104509
Н	1.912615	1.306648	0.617901	Н	-1.877008	-1.31909	0.651272
Н	1.586931	1.047524	-1.125346	Н	-1.579369	-1.077699	-1.115377
С	1.312916	-0.758531	0.107847	C	-1.33157	0.75841	0.104514
Н	1.586936	-1.04752	1.125344	Н	-1.579357	1.0777	1.115384
Н	1.912613	-1.30665	-0.617903	Н	-1.87702	1.319093	-0.651259

Table S2 Cartesian coordinates of the optimized structures of EC and EC^+ .

EMC	Х	Y	Z	EMC^{+}	X	Y	Z
C	0.599061	0.547538	0.000047	С	0.537675	0.450062	0.000004
0	1.294236	1.548103	0.000132	0	1.235017	1.552428	-0.000006
0	-0.733969	0.621335	0.000024	0	-0.724987	0.581747	0.000004
0	1.056833	-0.711347	-0.000032	0	1.136361	-0.68094	0.000014
С	-1.549489	-0.592044	-0.000073	С	-1.627737	-0.645392	-0.000018
Н	-1.300353	-1.175895	0.889849	Н	-1.364317	-1.202522	0.89876
Н	-1.300329	-1.17577	-0.89007	Н	-1.364335	-1.202478	-0.898829
C	2.495025	-0.868029	-0.000008	С	2.622953	-0.792992	-0.000002
Н	2.66177	-1.944458	-0.000027	Н	2.789432	-1.865823	-0.000098
Н	2.921232	-0.411302	-0.895545	Н	3.001637	-0.324794	-0.907166
Н	2.9212	-0.411337	0.895562	Н	3.001633	-0.324955	0.907247
С	-2.9999994	-0.152435	-0.000062	С	-3.038772	-0.12179	0.000009
Н	-3.23187	0.441395	-0.8905	Н	-3.245203	0.47232	-0.894438
Н	-3.644168	-1.038796	-0.000141	Н	-3.709497	-0.989226	-0.000011
Н	-3.231899	0.441258	0.89046	Н	-3.245187	0.472268	0.894494

Table S3 Cartesian coordinates of the optimized structures of EMC and EMC^+ .

TMSPi	X	Y	Z	TMSPi ⁺	Х	Y	Z
Р	-0.017301	0.046272	0.384759	Р	-0.010718	0.028474	-0.48984
0	0.006057	-1.410582	-0.383629	0	0.655012	-1.291617	0.020697
0	1.185385	0.797071	-0.458668	0	-1.467748	0.133895	0.069155
0	-1.303561	0.717202	-0.393073	0	0.829786	1.258674	-0.01613
Si	0.694076	-2.930095	-0.03922	Si	0.421029	-3.042789	0.044233
Si	2.272791	2.042257	-0.040764	Si	-2.902583	1.163353	0.041823
Si	-2.962354	0.877542	-0.042219	Si	2.485412	1.871298	0.046771
C	0.715143	-3.211302	1.824483	C	-0.974224	-3.431513	-1.143125
Н	1.097576	-4.215492	2.049858	Н	-1.13392	-4.51681	-1.177734
Н	1.358754	-2.48703	2.338585	Н	-1.91611	-2.966405	-0.830414
Н	-0.291851	-3.132653	2.25243	Н	-0.740522	-3.09724	-2.161013
C	-0.413084	-4.178207	-0.906405	C	2.077492	-3.713498	-0.506325
Н	-0.030197	-5.197565	-0.767651	Н	2.061859	-4.81074	-0.496133
Н	-1.435261	-4.145124	-0.509793	Н	2.318002	-3.388608	-1.525273
Н	-0.461264	-3.981488	-1.98458	Н	2.881072	-3.381708	0.161186
С	2.440979	-2.970647	-0.741508	C	0.012238	-3.419513	1.831383
Н	2.43839	-2.780282	-1.821894	Н	0.813676	-3.085244	2.500287
Н	3.081153	-2.217102	-0.266526	Н	-0.920818	-2.933224	2.138266
Н	2.899645	-3.95407	-0.574448	Н	-0.10986	-4.501948	1.965411
С	-3.190487	1.25292	1.790679	C	3.471487	0.954486	-1.2544
Н	-4.252871	1.417421	2.013804	Н	4.500942	1.33527	-1.266581
Н	-2.842612	0.425626	2.421329	Н	3.517127	-0.120959	-1.04827
Н	-2.642564	2.156619	2.08505	Н	3.050278	1.10112	-2.256107
С	-3.543593	2.310703	-1.111369	C	2.276251	3.692721	-0.320798
Н	-4.618063	2.487613	-0.973199	Н	3.248755	4.199905	-0.282082
Н	-3.013649	3.235847	-0.853275	Н	1.854018	3.848961	-1.32022
Н	-3.370608	2.106232	-2.175181	Н	1.616689	4.171451	0.412175
С	-3.838597	-0.72252	-0.509517	C	3.045385	1.513199	1.796794
Н	-3.676677	-0.969598	-1.565978	Н	2.393656	2.001783	2.530332
Н	-3.480547	-1.565987	0.093566	Н	3.05046	0.436574	2.001092
Н	-4.920531	-0.629804	-0.347577	Н	4.065362	1.890305	1.94617
С	3.416805	1.425792	1.323454	С	-3.276593	1.491586	-1.762872
Н	4.162508	2.191027	1.575984	Н	-4.198259	2.080744	-1.850472
Н	2.859774	1.188465	2.238347	Н	-2.47191	2.058516	-2.24617
Н	3.955391	0.522636	1.010595	Н	-3.422008	0.555917	-2.315062
С	3.223255	2.395813	-1.623349	C	-4.179106	0.090626	0.888482
Н	3.963969	3.189495	-1.461192	Н	-5.138694	0.620994	0.937558

 $\label{eq:table_stable} \textbf{Table S4} \ Cartesian \ coordinates \ of the \ optimized \ structures \ of \ TMSPi \ and \ TMSPi^+.$

Н	3.756957	1.503157	-1.972125	Н	-4.337494	-0.845046	0.340075
Н	2.548778	2.722395	-2.424375	Н	-3.876228	-0.15493	1.912701
С	1.304265	3.553009	0.533249	С	-2.455935	2.704263	1.005817
Н	0.603383	3.893667	-0.238721	Н	-2.157835	2.458807	2.031691
Н	0.728944	3.34001	1.44294	Н	-1.63583	3.253531	0.52922
Н	1.986641	4.383159	0.758134	Н	-3.324012	3.374049	1.057877

TMSPE	X	Y	Z	TMSPE ⁺	Х	Y	Z
Р	-0.036941	0.593924	-1.068094	Р	0.007389	0.532783	-0.509112
0	-0.886498	-0.488089	-0.173236	0	-1.017703	-0.475047	0.088531
0	-0.023445	1.821205	0.075525	0	-0.465078	1.99106	-0.068027
0	1.469189	-0.028234	-0.938997	0	1.442018	0.272846	0.042312
Si	-2.545932	-0.776161	0.098847	Si	-2.723227	-0.953842	0.050347
Si	2.452402	-0.938264	0.12243	Si	2.786803	-0.880011	0.070775
С	0.571209	3.081522	-0.303585	C	0.340286	3.214779	-0.284871
Н	1.661819	2.998814	-0.213897	Н	1.343358	3.025165	0.103019
Н	0.334072	3.303896	-1.353493	Н	0.384237	3.38988	-1.362195
Н	0.037138	4.173683	0.6081	Н	-0.35568	4.341014	0.447857
С	0.269103	3.954189	1.656299	C	-0.408132	4.139132	1.522149
Н	0.498567	5.1338	0.347816	Н	0.218336	5.262181	0.296306
Н	-1.049126	4.272815	0.504865	Н	-1.367453	4.496945	0.061116
Н	-2.686122	-2.633312	0.355801	Н	-2.638637	-2.820226	0.097886
С	-3.725904	-2.91755	0.56304	C	-3.652314	-3.239663	0.120763
Н	-2.357341	-3.18289	-0.534747	Н	-2.128221	-3.21769	-0.786921
Н	-2.073029	-2.96305	1.203606	Н	-2.108483	-3.17083	0.990834
Н	-3.536506	-0.211572	-1.401282	Н	-3.439941	-0.271215	-1.538719
С	-3.444652	0.868809	-1.567633	C	-3.413844	0.824536	-1.559196
Н	-3.20929	-0.724386	-2.314092	Н	-2.903035	-0.649658	-2.416603
Н	-4.601199	-0.435502	-1.254404	Н	-4.488889	-0.58081	-1.629808
Н	-3.062573	0.166928	1.643323	Н	-3.450341	-0.188198	1.595097
С	-4.115907	-0.030339	1.881953	С	-4.508658	-0.465169	1.68353
Н	-2.459797	-0.132481	2.509584	Н	-2.932969	-0.540657	2.494778
Н	-2.944154	1.248415	1.506454	Н	-3.388631	0.905649	1.565616
Н	2.096549	-2.761893	-0.183589	Н	2.348312	-2.267094	-1.107191
С	1.057752	-3.010547	0.063378	С	1.449418	-2.805388	-0.78572
Н	2.268635	-3.02445	-1.234901	Н	2.18838	-1.895375	-2.126196
Н	2.751271	-3.393005	0.431571	Н	3.174068	-2.989247	-1.142445
Н	4.214153	-0.501913	-0.374862	Н	4.251079	0.139326	-0.486847
С	4.415443	0.565858	-0.223743	C	4.407897	1.003727	0.168686
Н	4.936644	-1.068756	0.226598	Н	5.162616	-0.471256	-0.463982
Н	4.398411	-0.736137	-1.430642	Н	4.113985	0.502095	-1.512164
С	2.128304	-0.470402	1.917555	С	2.864829	-1.410674	1.862869
Н	2.807985	-1.027194	2.576398	Н	3.702234	-2.104676	2.009744
Н	2.296811	0.599757	2.08725	Н	3.017896	-0.551352	2.525699
Н	1.100535	-0.704274	2.217184	Н	1.943963	-1.922491	2.164951

 $\label{eq:table_state} \textbf{Table S5} \ \text{Cartesian coordinates of the optimized structures of TMSPE and TMSPE^+}.$

TEP	X	Y	Z	TEP^+	X	Y	Z
Р	0.080101	0.054834	1.182173	Р	0.022935	0.005858	0.818416
0	-0.415686	1.122265	-0.004786	0	-0.424701	1.349998	0.092828
0	-0.690031	-1.344717	0.742154	0	-0.93214	-1.213276	0.55641
0	1.643512	-0.1038	0.694955	0	1.455662	-0.356355	0.257941
С	-0.821485	-1.878332	-0.601557	С	-0.885922	-2.160405	-0.606787
Н	-0.908128	-1.05132	-1.313632	Н	-1.064256	-1.55904	-1.500257
Н	0.086766	-2.446462	-0.831365	Н	0.118678	-2.583477	-0.628126
С	-2.047013	-2.77468	-0.651795	С	-1.955349	-3.19943	-0.374739
Н	-2.956986	-2.205286	-0.432619	Н	-2.948159	-2.742608	-0.32272
Н	-2.145354	-3.211637	-1.652833	Н	-1.941216	-3.900214	-1.21784
Н	-1.962573	-3.591801	0.07312	Н	-1.766581	-3.762495	0.544312
С	-1.728916	1.717152	0.119262	С	-1.760488	1.993866	0.21453
Н	-1.921043	1.967337	1.17124	Н	-1.849159	2.349203	1.242557
Н	-2.481111	0.985232	-0.19958	Н	-2.512449	1.228359	0.014268
С	-1.782179	2.962049	-0.749055	С	-1.797675	3.122196	-0.791221
Н	-2.777467	3.417161	-0.683044	Н	-2.772251	3.617698	-0.715396
Н	-1.041755	3.699463	-0.420261	Н	-1.01751	3.860941	-0.584443
Н	-1.586971	2.713967	-1.798304	Н	-1.679492	2.74661	-1.812054
С	2.163031	-0.106691	-0.663729	С	2.58579	0.593932	0.066444
Н	2.01572	-1.10654	-1.085989	Н	2.208912	1.425276	-0.531412
Н	1.602951	0.616515	-1.26176	Н	2.876735	0.945011	1.058276
С	3.639001	0.246487	-0.610269	С	3.692595	-0.169713	-0.623667
Н	4.19215	-0.470382	0.006624	Н	3.369753	-0.535435	-1.603062
Н	4.059275	0.224946	-1.622979	Н	4.539109	0.510682	-0.770386
Н	3.786009	1.250403	-0.19694	Н	4.029594	-1.013986	-0.014744

Table S6 Cartesian coordinates of the optimized structures of TEP and TEP $^+$.

Compound	HOMO / au.	LUMO / au.	Oxidation potential / V
EC	-0.3087	-0.00835	7.08
EMC	-0.2954	0.00098	6.79
DMC	-0.2983	0.00008	6.75
TMSP	-0.278	-0.0175	5.99
TMPSi	-0.2327	-0.0137	4.28
TMSPE	-0.2403	-0.01115	4.41
TEP	-0.2555	0.00086	4.73

Table S7 HOMO energies, LUMO energies, and oxidation potential of EC, DMC,EMC, and P-based additives.

The molecular structures of EC, EMC, DMC and P-based additives were optimized by means of nonlocal density functional theory (DFT) using the B3LYP function with the 6-311g (d) level basis set (Gaussian 09 package). The frontier molecular orbital energy of each organic molecule was calculated with this program. The bulk solvent effect (dielectric constant = 20.5) was included via polarized continuum models (PCM).

Fig. S2 Linear sweep voltammograms of Pt electrode in 1 mol L^{-1} LiPF₆-EC/DMC/EMC (1:1:1, wt.%) with and without TMSPE at 0.1 mV s⁻¹ from 3.0 to 6.0V.

Fig. S3 The initial charge-discharge curve performance of

 $Li_{1.144}Ni_{0.136}Co_{0.136}Mn_{0.544}O_2/Li$ cells with different additive at 45°C.

Material	Concentration / %	Charge capacity / mAh g ⁻¹	Discharge capacity / mAh g ⁻¹	Efficience / %
	0.5	322.2	301.3	93.5
TMSP	1.0	332.3	293.7	88.4
	2.0	332.9	277.1	83.3
	0.5	325.5	298.1	91.6
TMSPi	1.0	334.5	295	88.2
	2.0	349.1	268.7	77
	0.5	328.1	298	90.8
TMCDE	1.0	366.9	310.5	84.6
IMSPE	2.0	379.5	290.8	76.6
	3.0	382.4	295.7	77.3
	0.5	331.2	288.0	87.0
TEP	1.0	341.2	276.3	81.0
	3.0	386.7	268.1	69.3

Table S8 The initial charge and discharge capacities of P-based additives in different

 concentrations additive.

Fig. S4 Cycling performance of $Li_{1.144}Ni_{0.136}Co_{0.136}Mn_{0.544}O_2/Li$ cells with electrolytes in the different concentration of additive. The current is 0.2 C.

Fig. S5 Coulombic efficiency of $Li_{1.144}Ni_{0.136}Co_{0.136}Mn_{0.544}O_2/Li$ cells with electrolytes in the different additive.

Fig. S6 Cycling performance (a, c) and coulombic efficiency (b, d) of $Li_{1.144}Ni_{0.136}Co_{0.136}Mn_{0.544}O_2/Li$ cells with electrolytes in the different additive at 25 °C (top) and 45 °C (bottom).

Fig. S7 Reaction energies ($\triangle G$ in au.) of TMSPi and TMSPi⁺ with a HF molecule.

Fig. S8 Reaction energies ($\triangle G$ in au.) of TMSPE with a HF molecule.

Fig. S9 Reaction energies ($\triangle G$ in au.) of TMSPE⁺ with a HF molecule.

Fig. S10 Reaction energies ($\triangle G$ in au.) of TEP and TEP⁺ with a HF molecule.

Fig. S11 ¹⁹F NMR spectra of the electrolytes with and without adding different

additive after storage under 25 $^{\rm o}{\rm C}$ for 24 h.

Fig. S12 Optimized structures and the relative combination energies (Δ E, KJ mol⁻¹) between HF and solvents or electrolyte additives: DMC/EC/EMC/TMSPi/TMSPE/TEP-HF.

Fig. S13 OCV variation of $Li_{1.144}Ni_{0.136}Co_{0.136}Mn_{0.544}O_2/Li$ cells with different additive during storage for 20 days at 45 °C.

Fig. S14 Cycling performance of MCMB/Li cells with electrolytes in the different additives.