Supporting Information

Metal Decoration of Si Particles via High-Energy Milling for Lithium-ion Battery Anodes

Khryslyn G. Araño^{1*}, Beth L. Armstrong², Robert L. Sacci¹, Matthew S. Chambers¹, Chun-Sheng Jiang³, Joseph Quinn⁴, Harry M. Meyer III¹, Anton W. Tomich⁵, Amanda Musgrove¹, Steven Lam¹, Elena Toups¹, Chongmin Wang⁴, Christopher S. Johnson⁵, Gabriel M. Veith^{1*}

¹Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831,

United States

²Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States

³Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States

⁴Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States

⁵Chemical Science and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne Illinois 60439-4837, United States Corresponding authors email address:

Khryslyn G. Araño: khryslyn.arano@gmail.com

Gabriel M. Veith: veithgm@ornl.gov

XRD Analysis of the Si Powder

Table S1. S	Starting m	nodels used	d in Riet	veld refin	nement.
-------------	------------	-------------	-----------	------------	---------

Model	Reference
Si	Többens <i>et al.</i> ¹
Ag	Swathi et al. ²
Al	Didier <i>et al.</i> ³
Fe	Kohlhaas <i>et al.</i> ⁴
Ni	Conway & Prior <i>et al.</i> ⁵
Ti	Wasilewski et al. ⁶
Y	Spedding <i>et al.</i> ⁷

Table S2. Fitting parameters for the Rietveld refinement of the metal-decorated Si powders.

Material	R _{wp}	χ^2
Si ^{Ag}	9.996%	2.642
Si ^{Al}	8.520%	2.385
Si ^{Fe}	2.867%	1.323
Si ^{Ni}	3.616%	2.095
Si ^{Ti}	10.137%	2.486
Si ^Y	9.145%	2.933

 Table S3. Si^M cell parameters.

Sample	Si cell parameter (Å)
Si ^{Ag}	5.4302(3)
Si ^{Al}	5.43059(14)

)

Scanning Electron Microscopy

Figure S1. a) TEM images of the Si^{Ag} particle and b) surface SEM-EDX images of the pristine Si^{Ag} electrode.

Scanning Spreading Resistance Microscopy (SSRM) of the Electrodes

Figure S2. Average resistance of the electrodes prepared from the baseline Si and metaldecorated Si powders obtained from SSRM-AFM measurements.

Electrochemical Tests of the Si^M Electrodes

Figure S3. First cycle half-cell charge-discharge profile of Si^{Ag}.

Figure S4. Voltage profiles of a) Si^{Ni}, b) Si^{Fe}, c) Si^{Al}, and d) Si^Y during cycling in half-cell configuration.

	20th Cycle	40th Cycle	60th Cycle	80th Cycle	100th Cycle
Baseline Si	100%	99.8%	99.2%	99.0%	99.7%
Si ^{Fe}	100%	100%	100%	99.7%	99.4%
Si ^{Ni}	100%	99.8%	99.6%	99.3%	99.3%
Si ^{Ti}	100%	98.9%	98.5%	98.2%	98.5%
Si ^{Ag}	99.7%	99.7%	99.7%	99.6%	99.5%
Si ^{Al}	99.2%	100%	99.9%	99.6%	99.5%
Si ^Y	99.6%	99.2%	99.4%	99.6%	99.8%

Table S4. Coulombic efficiencies of the Si^M half cells.

Electrochemical Impedance Spectroscopy Measurements in Half Cells

Figure S5. Nyquist profiles of a) Si^{Ni}, b) Si^{Fe}, c) Si^{Ti}, d) Si^{Ag}, e) Si^{Al}, and f) SiY at delithiated states in half-cell configuration

Figure S6. Distribution of relaxation times (DRT) plots at different potentials during the first delithiation of a) baseline Si, b) Si^{Ni}, and c) Si^{Al}, and DRT plots during cycling at delithiated states (delithiated at 1V) of d) baseline Si, e) Si^{Ni}, and f) Si^{Al}.

XPS Analysis of the Electrodes

Table S5. Surface composition (at %) of the baseline Si electrode at different lithiation and delithiation potentials

	Li	F	0	С	Si	Р	N
250 mV	38.5	29.2	18.7	11.5	1.1	0.8	0.1
100 mV	32.8	35.2	9.6	17.9	3	1	0.6
50 mV	37.1	35.9	11	12.9	2	0.9	0.2
300 mV	36.2	36.7	9.8	14.5	1.7	0.8	0.3
450 mV	37.7	35.1	13.2	12.8	0	0.8	0.3
750 mV	34.9	20.1	25	18.9	0	0.8	0.1
1.5 V	36	23	21.5	18.3	0	0.9	0.1

Table S6.	Surface	composition	(at %) o	of the Si ^N	ⁱ electrode	at different	lithiation	and d	elithiation
potentials									

	Li	F	0	С	Si	Р	N	Ni
250 mV	25.9	28.9	13.8	22.6	3.8	3.4	1.4	0.1
100 mV	31.6	35.5	11.6	16.1	2.1	2.4	0.6	0.1
50 mV	34.7	19.7	24.8	19.6	0.1	0.7	0.1	0
300 mV	35.6	26.6	18.5	17.6	0.3	1.2	0.2	0

450 mV	35.5	22.5	22.1	18.9	0	0.7	0.2	0
750 mV	37.3	23.8	20.7	17.2	0	0.8	0.1	0
1.5 V	36.5	21.7	22.7	18.2	0	0.8	0.1	0

Table S7. Surface composition (at %) of the Si^{Al} electrode at different lithiation and delithiation potentials

	Li	F	0	С	Si	Р	N	Al
250 mV	24.3	30.8	12.2	26.8	2.6	0.9	1.3	1.2
100 mV	37.1	38.7	8.7	12.5	2.2	0.0	0.6	0.3
50 mV	38.0	33.8	14.9	12.3	0.1	0.0	0.7	0.1
300 mV	36.1	32.9	12.9	17.0	0.0	0.0	0.7	0.2
450 mV	28.7	14.1	21.0	35.3	0.0	0.5	0.2	0.1
750 mV	36.3	23.6	22.3	17.2	0.0	0.3	0.1	0.2
1.5 V	34.1	16.0	28.2	20.9	0.0	0.5	0.1	0.1

Electrochemical Performance of Si^M in Full Cells

Figure S7. Full cell cycling behavior of select Si^M with NMC811 with an areal loading of a) 2.59 mAh cm⁻² and b) 4.0 mAh cm⁻²

References:

(1) Többens, D. M.; Stüßer, N.; Knorr, K.; Mayer, H. M.; Lampert, G. E9: The New High-Resolution Neutron Powder Diffractometer at the Berlin Neutron Scattering Center. *Materials Science Forum* **2001**, *378-381*, 288-293. DOI: 10.4028/www.scientific.net/MSF.378-381.288.

(2) S, S.; K, A.; Dzubinska, A.; Reiffers, M.; R, N. Systematic investigations on the magnetic properties of moderate heavy Fermion CeAg0.68Si1.32 alloy. *Physica B: Condensed Matter* **2019**, *575*. DOI: 10.1016/j.physb.2019.411679.

(3) Didier, C.; Pang, W. K.; Guo, Z.; Schmid, S.; Peterson, V. K. Phase Evolution and Intermittent Disorder in Electrochemically Lithiated Graphite Determined Using in Operando Neutron Diffraction. *Chemistry of Materials* **2020**, *32* (6), 2518-2531. DOI: 10.1021/acs.chemmater.9b05145.

(4) Kohlhaas, R.; Ph., D.; Schmitz-Pranghe, N. Uber die temperaturabhangigkeit der gitterparameter von eisen, kobalt und nickel im bereich hoher temperaturen Locality: synthetic Sample: at T = 520 C. 1967.

(5) Conway, J. O.; Prior, T. J. Interstitial nitrides revisited – A simple synthesis of M Mo3N (M = Fe, Co, Ni). *Journal of Alloys and Compounds* **2019**, *774*, 69-74. DOI: 10.1016/j.jallcom.2018.09.307.

(6) Wasilewski, R. J. Thermal expansion of titanium and some titanium oxygen alloys. In Transactions of the Metallurgical Society of Aime, 1961.

(7) Spedding, F. H.; Hanak, J. J.; Daane, A. H. High temperature allotropy and thermal expansion of the rare-earth metals. *Journal of the Less Common Metals* **1961**, *3* (2), 110-124. DOI: https://doi.org/10.1016/0022-5088(61)90003-0.