Supplementary Information (SI) for RSC Applied Interfaces. This journal is © The Royal Society of Chemistry 2025

Supplementary Information for

Strongly coupled C@SiO_x/MoSe₂@NMWCNT heterostructure as anodes

for Na⁺ batteries with excellent stability and capacity

Mengru Bian,^a Yincai Yang,^a Youwen Chen,^{a,*} Tiantian Wei,^a Wei Deng,^{a*} Biao Fu,^a

Renhua Qiu^{a,*}

^aCollege of Chemistry and Chemical Engineering, Hunan University, 410081, Changsha, China.

E-mail: renhuaqiu1@hnu.edu.cn, 36928664@qq.com

Fig. S1 Mass spectra of triphenyl silyl chloride ($(C_6H_5)_3$ SiCl) mixed with EG.

Fig. S2 Mass spectra of molybdenum pentachloride (MoCl₅) and triphenyl silyl chloride $((C_6H_5)_3SiCl)$ mixed with EG.

Fig. S3 Mass spectra of $MoCl_5$ and $(C_6H_5)_3SiCl$ mixed with EG.

Fig. S4 Mass spectra of $MoCl_5$ and $(C_6H_5)_3SiCl$ mixed with EG.

Fig. S5. Two sets of SEM images of C@SiO_x@NMWCNT (a-c) and (d-f).

Fig. S6 (a) TEM images of C@SiO_x@NMWCNT, (b) STEM images of C@SiO_x@NMWCNT, (c) Elemental distribution of C@SiO_x@NMWCNT and corresponding (d), (e), (f) and (g) EDS-mapping element maps.

Fig. S7 Two sets of SEM images of $C@SiO_x/MoSe_2@C$ (a-c) and (d-f).

Fig. S8 (a-b) TEM images of C@SiO_x/MoSe₂@C, (c) STEM images of C@SiO_x/MoSe₂@C, (d) Elemental distribution of C@SiO_x/MoSe₂@C and corresponding (e), (f), (g), (h) and (i) EDS-mapping element maps.

Fig. S9 (a) Raman shift of C@MoSe₂, NMWCNT, C@SiO_x/MoSe₂@C, C@SiO_x/MoSe₂-3:1@NMWCNT, (b) XPS full spectrum of C@SiO_x/MoSe₂-3:1@NMWCNT, the high-resolution XPS (c) C 1s spectrum, (d) N 1s spectrum.

Fig. S10 The TG analysis of C@MoSe₂, C@MoSe₂@NMWCNT, C@SiO_x/MoSe₂-2:1@NMWCNT, C@SiO_x/MoSe₂-3:1@NMWCNT@NMWCNT and C@SiO_x/MoSe₂-4:1@NMWCNT composite systems.

Fig. S11 SEM images of C@MoSe₂-Air (900°C) (a-c), C@MoSe₂@NMWCNT (900°C) (d-f), C@SiO_x/MoSe₂-3:1@NMWCNT-Air (900°C) (g-i), they represent residues obtained by calcination at 900°C for four hours in an air environment.

Fig. S12 (a-b) TEM images of C@MoSe₂-Air (900°C), (c) STEM images of C@MoSe₂-Air (900°C), (d) Eleental distribution of C@MoSe₂-Air (900°C) and corresponding (f), (g) and (h) EDS-mapping element maps.

Fig. S13 (a) STEM image of C@SiO_x/MoSe₂-3:1@NMWCNT-Air (900°C), (b) Elemental distribution of C@SiO_x/MoSe₂-3:1@NMWCNT-Air (900°C) and corresponding (c), (d), (f), (g) and (h) EDS-mapping element maps.

Fig. S14 (a-b) ex situ HRTEM image of C@SiOx/MoSe2-3:1@NMWCNT, (c) STEM image of C@SiOx/MoSe2-3:1@NMWCNT, (d) Elemental distribution of C@SiOx/MoSe2-3:1@NMWCNT and corresponding (e), (f), (g), (h), (i), (j) and (k) EDS-mapping element maps. (Charge from open circuit voltage 0.01 V to 3 V).

Fig. S15 (a) Non-in situ TEM image of C@SiO_x/MoSe₂-3:1@NMWCNT, (b) HRTEM image of C@SiO_x/MoSe₂-3:1@NMWCNT, (c) STEM image of C@SiO_x/MoSe₂-3:1@NMWCNT, (d) Elemental distribution of C@SiO_x/MoSe₂-3:1@NMWCNT and corresponding (e), (f), (g), (h), (i), (j) and (k) EDS-mapping element maps. (Charge from open circuit voltage 0.01 V to 2 V).

Fig. S16 The discharge/charge profiles (0.1 A g^{-1}) of C@MoSe₂ and the discharge/charge profiles (0.5 A g^{-1}) of C@SiO_x/MoSe₂@C, C@SiO_x@NMWCNT.