## In-situ thermal solvent-free synthesis of doped ZIF-8 as a highly efficient visible-light-driven photocatalyst

Farah Naz, <sup>ab</sup> Chun Hong Mak, <sup>ab</sup> Wang Zhe, <sup>ab</sup> Tong Haihang, <sup>ab</sup> Shella Permatasari Santoso\*<sup>c</sup>, Minshu Du<sup>d</sup>, Ji-Jung Kai, Kuan-Chen Cheng, Chang-Wei Hsieh, Wenxin Niu, Zheng Hu, Hsien-Yi Hsu, \*<sup>ab</sup> <sup>a</sup> School of Energy and Environment, Department of Materials Science and Engineering, Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, China

<sup>b</sup> Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China

<sup>°</sup> Department of Chemical Engineering, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Kalijudan No. 37, Surabaya 60114, East Java, Indonesia

<sup>d</sup> School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China

## 1. The pH effect and dye concentration adjustment process

The study also examined the impact of pH on the photocatalytic activity of the solution. The MB solution had a concentration of 10 mg/L, and the Fe@ZIF-8 dosage was 0.012 g/mL. The pH of the solution was adjusted by adding HCl and NaOH to attain the desired value. The pH of the solution was initially adjusted to pH 3 using a 1 M HCL solution. Then, a 0.5 M NaOH solution was added drop by drop until a pH of 10 was reached. To investigate the impact of dye concentration, we prepared concentrated solutions of MB at different concentrations, such as 10 mg/L and 20 mg/L. These solutions were subsequently introduced into a 0.012 g/mL fixed catalyst. According to the findings, a concentration of 10 mg/L of MB dye solution was the optimal choice for the studies.



Figure S1. EDS mapping spectra and FESEM images (a: Elemental mapping) of ZIF-8.



Figure S2. EDS mapping spectra and FESEM images (a: Elemental mapping) of Fe@ZIF-8.



Figure S3. EDS mapping spectra and FESEM images (a: Elemental mapping) of Ni@ZIF-8.



Figure S4. ATR-FTIR of the prepared material.

Table 1. Atomic % in prepared samples calculated by XPS.

| Sample   | Zn atomic | C atomic | N atomic | Fe atomic | Ni atomic |
|----------|-----------|----------|----------|-----------|-----------|
|          | (%)       | (%)      | (%)      | (%)       | (%)       |
| ZIF-8    | 6.51      | 73.79    | 18.72    | _         | -         |
| Fe@ZIF-8 | 4.96      | 74.06    | 18.41    | 2.16      | -         |
| Ni@ZIF-8 | 4.52      | 76.37    | 17.05    | -         | 1.28      |



**Figure S5. (a)** UV–vis diffuse reflectance spectra of as-prepared samples **(b)** Tauc's plots of prepared samples calculated from UV-vis absorption spectra.



Figure S6. (a-b) MB and RhB photodegradation efficiency curves, (c-d) the MB and RhB kinetics curves for the prepared samples, respectively.



Figure S7. MB degradation using Fe@ZIF-8.



Figure S8. MB degradation using Fe@ZIF-8.



Figure S9. Photocatalytic degradation efficiencies of Fe@ZIF-8 for MB in the presence of scavengers (the concentration of the scavengers was 1 mM).



Figure S10. SEM of ZIF-8 (Scale 1µm).



Figure S11. SEM of Fe@ZIF-8 (Scale  $2\mu m$ ).



Figure S12. SEM of Ni@ZIF-8 (Scale  $3\mu m).$