Supplementary information

Triazolinedione-functionalized isoprene rubber composites with self-adhesion *via* cross-linking with

zinc dimethacrylate

Kyohei Kotani,*^{a,b} Yuji, Kitamura, ^a Katsuhiko Tsunoda,^a Akira Takahashi ^b and Hideyuki Otsuka*^{b,c}

^a Sustainable and Advanced Materials Division, Bridgestone Corporation, 3-1-1, Ogawahigashi-cho, Kodaira-shi, Tokyo 187-8531, Japan

^b Department of Chemical Science and Engineering, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan

^c Research Center for Autonomous Systems Materialogy (ASMat), Institute of Integrated Research, Institute of Science Tokyo.

*Corresponding authors: Kyohei Kotani (Email: kyohei.kotani@bridgestone.com), Hideyuki Otsuka (Email: otsuka@mct.isct.ac.jp)

Fig. S1 ¹H NMR spectra of PI (black line), TAD-PI-1 (yellow line), TAD-PI-2 (orange line), TAD-PI-3 (red line) and TAD-PI-4 (dark red line) (C₂D₂Cl₄, 600 MHz).

The ratio of isoprene unit and TAD unit were calculated by the following equations respectively. Here, I(A) and I(B) represent the integral ratio of δ 7.63–7.30 ppm (aromatic 5H of phenyl group in TAD unit), 5.14 ppm (1H of *cis*-1,4-isoprene olefinic unit), respectively.

$$Isoprene unit (mol\%) = \frac{I(B)}{I(A)/5 + I(B)} \times 100 (mol\%)$$
(S1)

$$TAD unit (mol\%) = \frac{I(A)/5}{I(A)/5 + I(B)} \times 100 (mol\%)$$
(S2)

Modification efficiency is determined by following equation.

 $Modification efficiency (\%) = \frac{TAD unit}{Loading PhTAD ratio to isoprene monomer unit} \times 100 (\%)$ (S3)

Polymer	Loading PhTAD ratio to isoprene monomer unit (mol%)	I (A)	I (B)	Modification efficiency (%)
PI	0	0	1.00	0
TAD-PI-1	1.0	0.042	1.00	83.3
TAD-PI-2	2.0	0.087	1.00	85.5
TAD-PI-3	3.5	0.160	1.00	88.8
TAD-PI-4	5.0	0.226	1.00	86.5

 Table S1
 Loading TAD ratio to isoprene monomer unit, integral ratio, and modificationefficiency

Table S2Comparison of M_n values measured by GPC and MALS

Polymer	$M_{\rm n}$ (10 ³ g/mol) measured by GPC	$M_{\rm n}$ (10 ³ g/mol) measured by MALS
PI	496	911
TAD-PI-1	365	368
TAD-PI-2	266	353
TAD-PI-3	122	348
TAD-PI-4	80	339

Fig. S2 Swelling degree of each sample after immersion in *n*-heptane for 4 days. Disc-shaped cross-linked specimens of 8.0 mm diameter were immersed in *n*-heptane for 4 days at r.t. and the swelling degree of specimens is defined as the length swelling ratio ($\lambda_s = d/d_0$; d_0 and *d* represent the diameter of a disc-shaped specimen before and after swelling, respectively).

Fig. S3 Relationship between torque at 30 min measured at 145 °C on the moving die rheometer and swelling rate with *n*-heptane.

Fig. S4 1 H NMR spectra of ZDMA (top), TAD-PI-4 (middle) and acid-treated TAD-PI-4/Z40 (bottom) (C₂D₂Cl₄, 600 MHz).

Fig. S5 Relationship between 100% modulus and swelling rate with *n*-heptane.

Fig. S6 Relationship between T_b and swelling rate with *n*-heptane.

To measure the degree of strain induced crystallization for each sample, two-dimensional wideangle X-ray scattering (2D-WAXS) images were obtained while stretching the samples. The 2D-WAXS images were obtained using NANO-Viewer (Rigaku), and Cu-Ka ray (wavelength: 0.1541 nm) was used with operating at 40 kV and 30 mA. Dumbbell-shaped ISO 37-4 specimens of each cured rubber sample were elongated horizontally in a symmetrical manner with a self-made device. The elongation speed was 0.05 mm/s, and 2D-WAXS images were continuously acquired at every 2.74% strain. The obtained 2D-WAXS images were integrated in the equatorial direction using an analysis software (Rigaku 2DP), and the scattering intensity was converted into a one-dimensional profile for the scattering vector q. The obtained onedimensional profiles were separated into amorphous scattering and crystalline reflections using a fitting software (Fityk). The degree of crystallinity was determined by integrating the amorphous and crystalline scattering intensities in the range $0 < q < 20.4 \text{ nm}^{-1}$, and the total crystalline scattering intensity was calculated. The degree of strain induced crystallization at 170% strain as a representative value of strain induced crystallinity is summarized in Fig. S7. The results using samples containing TAD-PI-3 and TAD-PI-4 were not described because these samples were broken before the crystallization.

Fig. S7 The degree of strain induced crystallization at 170% strain.