## **Supporting Information**

## Dual-modal detection of perfluorooctanoic acid (PFOA) using a single polymer platform: ACQ and IDA approaches

Arvin Sain Tanwar,<sup>†</sup> Parameswar Krishnan Iyer,<sup>\*, §</sup> and Franck Meyer<sup>\*, †</sup>

<sup>†</sup>Microbiology, Bioorganic and Macromolecular Chemistry (MBMC) Unit, Faculty of Pharmacy, Université Libre de Bruxelles, 1050, Brussels, Belgium

<sup>§</sup>Department of Chemistry and Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati–781039, Assam, India

AUTHOR EMAIL ADDRESS: franck.meyer@ulb.be and pki@iitg.ac.in

|             | Description                                                                               | Page |
|-------------|-------------------------------------------------------------------------------------------|------|
| Figure S1   | LOD Plot for IDA approach.                                                                | S3   |
| Figure S2   | Selectivity plots for common electrolytes present in water.                               | S3   |
| Figure S3   | Selectivity plots for similar PFOA analogues                                              | S4   |
| Figure S4   | PL emission spectra with different natural water samples (WS)                             | S4   |
| Figure S5   | Size distribution by DLS of PPMI with PFOA.                                               | S4   |
| Figure S6   | Fluorescence spectra of PPMI and UD.                                                      | S5   |
| Figure S7   | Absorbance spectra                                                                        | S5   |
| Figure S8   | Change in PL intensity maxima of UD/PPMI complex after addition of PFOA                   | S6   |
| Figure S9   | A plot of I/I <sub>o</sub> versus the concentration of PFOA for IDA approach.             | S6   |
| Figure S10  | Chemical structure of the PFOA analogues.                                                 | S7   |
| Figure. S11 | Corrected emission spectrum of PPMI after subtracting emission from blank HEPES solution. | S7   |

## **Table of Contents**



Figure S1. LOD plot for IDA approach.







Figure S3. Selectivity plots for similar PFOA analogues.



Figure S4. PL emission spectra with different natural water samples (WS).



**Figure. S5** Size distribution by DLS of PPMI with PFOA in water buffered with HEPES (10 mM, pH 7.2) (Zavg = 201.6 d.nm).



**Figure S6**. Fluorescence spectra of PPMI and UD in water buffered with HEPES (10 mM, pH 7.2) at different concentration of PFOA (excitation wavelength = 365 nm, slit width 2 nm).



**Figure S7**. Absorbance spectra of UD (0.1  $\mu$ M), UD and PPMI (80 nM) and UD+PPMI+PFOA (36.6 uM) in HEPES buffer (10 mM, pH 7.2)).



**Figure S8**. Change in PL intensity maxima of UD/PPMI complex after addition of PFOA in HEPES buffer (10 mM, pH 7.2) (excitation wavelength = 490 nm, slit width = 2 nm).



Figure S9. A plot of I/I<sub>o</sub> versus the concentration of PFOA for IDA approach.



Figure. S10. Chemical structure of the PFOA analogues.



Figure. S11. Corrected emission spectrum of PPMI after subtracting emission from blank HEPES solution.