Supporting Information

Photofabrication of fluorescent nanospheres from *de novo* designed peptides, and their enzyme-responsive dissociation in living cells

Sijie He,^a Xiang Shu,^a Zhaoyang Wang,^a Xue-Wang Gao,^b Ke Feng,^b Sumin Yang,^a Jianqun Shao^a and Nan Xie^{*a}

^a School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China. E-mail: nanxie@ccmu.edu.cn

^b Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, the Chinese Academy of Sciences, Beijing 100190, P. R. China.

Characterization. Transmission electron microscope (TEM) images were conducted by JEM-2100F microscope at accelerating voltage of 160 kV. High-resolution electrospray ionization mass spectrometries (HR-ESI MS) were performed on a ThermoScientific Q Exactive UHMR Hybrid Quadrupole-Orbitrap Mass Spectrometer. ¹H nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Ascend 600 MHz spectrometer. Fourier transform infrared (FT-IR) spectra were recorded on a Thermo Scientific Nicolet iS5 system. UV-visible (UV-vis) absorption spectra were recorded on a Shimadzu UV-2600 spectrophotometer. Fluorescence measurements were run on a Hitachi F-2500 fluorescence spectrophotometer. Circular dichroism (CD) spectra were measured on a Jasco J-810 spectrometer using 1-mm quartz cuvette. Dynamic light scattering (DLS) and zeta potential (ζ) were determined by a Malvern Nano-ZS90 Zetasizer.

Table S1. Loading content (%) and encapsulation efficiency (%) of PNS for fluorescent dyes.

Sample ^a	Loading content (%)	Encapsulation efficiency (%)
RhB@YXD-PNS	17.1	73.8
DPA@YX-PNS	12.8	70.8
FL@YXR-PNS	14.0	72.6

^a The feeding ratio of dye to peptide in weight was 0.2:1. The loading content and encapsulation efficiency were calculated by the following formulas: loading content = (weight of loaded dye/weight of dye-loaded PNS) \times 100%, encapsulation efficiency = (weight of loaded dye/weight of feeding dye) \times 100%.

Table S2. Encapsulation efficiency (%) of PNS for different fluorescent dyes.

Peptide Dye	YXD	YX	YXR
RhB	73.8	70.9	68.2
DPA	64.2	70.8	60.5
FL	38.9	62.7	72.6

Fig. S1 Time-dependent changes of UV-vis absorption and fluorescence emission spectra for YX peptide upon irradiation of 0, 2, 4, 6, 10 min.

Fig. S2 Time-dependent changes of UV-vis absorption and fluorescence emission spectra for YXR peptide upon irradiation of 0, 2, 4, 6, 10 min.

pH = 9.5, crosslinked aggregates pH = 10.5, desired nanospheres ig. S3 TEM images of the photocrosslinking products of MMP

pH = 11.5, no product

Fig. S3 TEM images of the photocrosslinking products of MMP-responsive peptides at different pH conditions.

Fig. S4 TEM image for MMP-responsive peptides after treated with light irradiation (405-nm LEDs, 112 mW cm⁻²) for 2, 6, and 10 min, respectively.

Fig. S5 CD spectra of YXD peptide and YXD-PNS in PBS.

Fig. S6 CD spectra of YX peptide and YX-PNS in PBS.

Fig. S7 CD spectra of YXR peptide and YXR-PNS in PBS.

Fig. S8 FT-IR spectra of RhB, RhB@YXD-PNS, YXD-PNS, YXD peptide.

Fig. S9 FT-IR spectra of DPA, DPA@YX-PNS, YX-PNS, YX peptide.

Fig. S10 FT-IR spectra of FL, FL@YXR-PNS, YXR-PNS, YXR peptide.

Fig. S11 Zeta potentials of YXD peptide, YXD-PNS, RhB@YXD-PNS, YX peptide, YX-PNS, DPA@YX-PNS, YXR peptide, YXR-PNS, FL@YXR-PNS.

Fig. S12 Photographs of RhB@YXD-PNS, DPA@YX-PNS, and FL@YXR-PNS solution of water under daylight (right) and a 365 nm UV lamp (left).

Fig. S13 UV-vis absorption and normalized fluorescence spectra of free DPA (dotted line) and DPA@YX-PNS (solid line).

Fig. S14 UV-vis absorption and normalized fluorescence spectra of free FL (dotted line) and FL@YXR-PNS (solid line).

Fig. S15 Photographs of YXD-PNS, YX-PNS, and YXR-PNS solution of water, PBS, and DMEM after placing at room temperature for 0 and 7 days.

Fig. S16 Photographs of RhB@YXD-PNS, DPA@YX-PNS, and FL@YXR-PNS solution of water, PBS, and DMEM after placing at room temperature for 0 and 7 days.

12 h24 h48 hFig. S17 TEM images of YYXALGLPXYY PNS incubated with MMP at 37 °C for 12, 24, and 48 h, respectively.

Fig. S18 Cytotoxicity of RhB@YXD-PNS at various peptide concentrations in A549 cells after 24, 48, and 72 h incubation (n = 3).

Fig. S19 Cytotoxicity of DPA@YX-PNS at various peptide concentrations in A549 cells after 24, 48, and 72 h incubation (n = 3).

Fig. S20 Cytotoxicity of FL@YXR-PNS at various peptide concentrations in A549 cells after 24, 48, and 72 h incubation (n = 3).

Fig. S21 (A) Colocalization of FL@YXR-PNS with LysoTracker Green in A549 cells. (B) CLSM images for A549 cells incubated with FL@YXR-PNS upon stimuli of MMP. Cell were counterstained with Hoechst 33342 (blue) for nuclei.

Fig. S26 ¹H NMR spectrum for YXD peptide in DMSO- d_6 .

Fig. S28 ¹H NMR spectrum for YXR peptide in DMSO- d_6 .

