Supporting Information (SI)

Lignin-derivable, thermoplastic, non-isocyanate polyurethanes with increased hydrogenbonding content and toughness *vs.* petroleum-derived analogues

Jignesh S. Mahajan,^{a,b} Zachary R. Hinton,^c Eduardo Nombera Bueno,^{a,d} Thomas H. Epps, III,^{a,b,c,d*} and LaShanda T. J. Korley^{a,b,c,d*}

^a Department of Materials Science & Engineering, University of Delaware, Newark, Delaware 19716, USA.

^b Center for Research in Soft matter and Polymers, University of Delaware, Newark, Delaware 19716, USA.

^c Center for Plastics Innovation, University of Delaware, Newark, Delaware 19716, USA.

^d Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA.

*Corresponding authors: thepps@udel.edu lkorley@udel.edu

Total number of Figures: 30

Proton (¹H) Nuclear magnetic resonance (NMR) spectra for bisguaiacols/bissyringols in deuterated dimethyl sulfoxide (DMSO- d_6)

Figure S1: ¹H NMR spectrum of bisguaiacol F (BGF)

3

¹H NMR spectra for diglycidyl ethers in DMSO-*d*₆

Figure S6: ¹H NMR spectrum of BGF diglycidyl ether

Figure S7: ¹H NMR spectrum of BSF diglycidyl ether

Figure S8: ¹H NMR spectrum of bisphenol A (BPA) diglycidyl ether

Figure S9: ¹H NMR spectrum of BGA diglycidyl ether

Figure S10: ¹H NMR spectrum of BSA diglycidyl ether in deuterated chloroform (CDCl₃) (*Note: BSA diglycidyl ether was not completely soluble in* DMSO-*d*₆)

¹H NMR spectra for cyclic carbonates in DMSO-*d*₆

Figure S13: ¹H NMR spectrum of BSF cyclic carbonate (BSFCC)

(7.13 7.11 6.86 6.84

5.13

Figure S15: ¹H NMR spectrum of BGA cyclic carbonate (BGACC)

9

¹H NMR spectra for non-isocyanate polyurethanes (NIPUs) in DMSO-*d*₆

Figure 17: ¹H NMR spectrum of BPF-NIPU

Figure 18: ¹H NMR spectrum of BGF-NIPU

Figure 19: ¹H NMR spectrum of BSF-NIPU

Figure 20: ¹H NMR spectrum of BPA-NIPU

Figure 21: ¹H NMR spectrum of BGA-NIPU

Figure 22: ¹H NMR spectrum of BSA-NIPU

Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra

Figure S23: Stacked ATR-FTIR spectra of (a) BPFCC and BPF-NIPU, (b) BGFCC and BGF-NIPU, and (c) BSFCC and BSF-NIPU. The NIPU formation was assessed through the disappearance of the carbonyl stretching vibration of the cyclic carbonate at ~1790 cm⁻¹ (highlighted in orange) and the appearance of the urethane carbonyl stretching vibration band ~1700 cm⁻¹ (highlighted in blue). Additionally, the signals at ~3100–3700 cm⁻¹ for –OH/–NH confirmed the characteristic functionalities of NIPUs. Curves are shifted vertically for clarity.

Figure S24: Stacked ATR-FTIR spectra of (a) BPACC and BPA-NIPU, (b) BGACC and BGA-NIPU, and (c) BSACC and BSA-NIPU. The NIPU formation was assessed through the disappearance of the carbonyl stretching vibration of the cyclic carbonate at ~1790 cm⁻¹ (highlighted in orange) and the appearance of the urethane carbonyl stretching vibration band ~1700 cm⁻¹ (highlighted in blue). Additionally, the signals at ~3100–3700 cm⁻¹ for –OH/–NH confirmed the characteristic functionalities of NIPUs. Curves are shifted vertically for clarity.

Figure S25: Differential weight fraction distributions as a function of molar mass (*M*) measured *via* gel permeation chromatography (GPC) for NIPUs. Molar masses were determined relative to poly(methyl methacrylate) standards using data from GPC with a refractive index detector [GPC solvent: *N*,*N*-Dimethylacetamide + 0.5 wt% lithium bromide]. See **Section 2.3.4**. in the main text for more details on GPC protocols/sample preparation.

1 cm

Figure S26: Optical images of NIPU films. See Section 2.3.5 in the main text for film formation protocols.

Figure S27: Dimensions of the NIPU films used for uniaxial tensile testing.

Figure S28: Representative engineering tensile stress *vs.* engineering strain (from 0% to 18%) curves, which shows necking for NIPUs acquired during uniaxial tensile testing using a load cell of 100 N and a strain rate of 10 % min⁻¹ at ~20 °C.

Figure S29: van Gurp-Palmen representation of the linear viscoelastic spectrum for (a) unsubstituted, bridging-carbon- and (b) dimethyl-substituted, bridging-carbon-based NIPUs.

Figure S30: Thermorheological (vertical) shift factors (referenced to 150 °C) for (a) unsubstituted, bridging-carbon- and (b) dimethyl-substituted, bridging-carbon-based NIPUs. Lines represent fits using the Williams-Landel-Ferry equation.

Abbreviations

ATR-FTIR	Attenuated total reflectance-Fourier transform infrared
BGA	Bisguaiacol A
BGACC	Bisguaiacol A cyclic carbonate
BGF	Bisguaiacol F
BGFCC	Bisguaiacol F cyclic carbonate
BPA	Bisphenol A
BPACC	Bisphenol A cyclic carbonate
BPF	Bisphenol F
BPFCC	Bisphenol F cyclic carbonate
BSA	Bissyringol A
BSACC	Bissyringol A cyclic carbonate
BSF	Bissyringol F
BSFCC	Bissyringol F cyclic carbonate
CDCl ₃	Deuterated chloroform
DMAc	<i>N,N</i> -Dimethylacetamide
DMSO-d ₆	Deuterated dimethyl sulfoxide
GPC	Gel permeation chromatography
M	Molar mass
NIPU	Non-isocyanate polyurethane
NMR	Nuclear magnetic resonance