Supplementary Materials for

Interactions between alkali cations and cyanidebridged network in A₂Co₄[Fe(CN)₆]_{3.3} Prussian blue analogues revealed by far-infrared spectroscopy

Maria Dronova,^{*a,b*} Laura Altenschmidt,^{*a,b*} Amélie Bordage,^{*a*} Jean-Blaise Brubach,^{*b*} Marine Verseils,^{*b*} Gregory Balthazar^{*a*}, Pascale Roy^{*b*} and Anne Bleuzen^{*a**}

Institut de chimie moléculaire et des matériaux d'Orsay (ICMMO), Université Paris-Saclay, 17 avenue des Science, 91400 Orsay, France
Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France

Figure S1. FIR spectra of CoFe PBAs of chemical formula $Cs_xCo_4[Fe(CN)_6]_{(8+x)/3} \bullet nH_2O$ at 300 K. **Figure S2.** FIR spectra of **Na₂CoFe**, **Rb₂CoFe** and **Cs₂CoFe** recorded upon cooling.

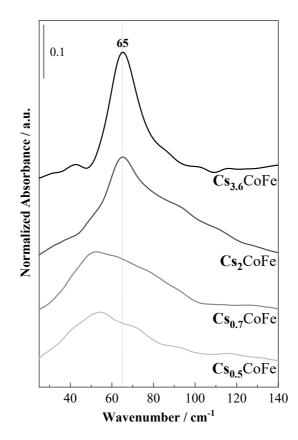
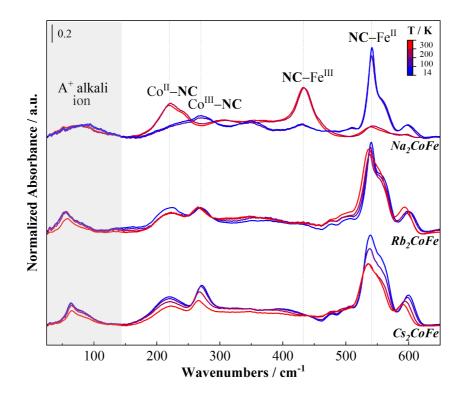
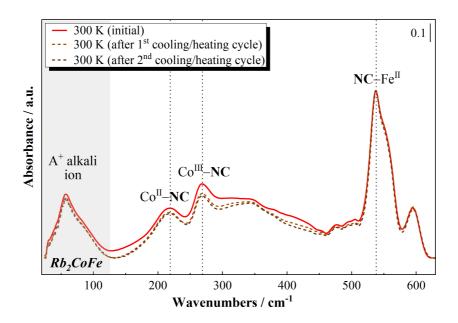
Figure S3. FIR spectra of Rb₂CoFe at 300K before cooling and after 1 and 2 cooling/heating cycles.

Figure S4. Low temperature XANES spectra of Na₂CoFe, Rb₂CoFe and Cs₂CoFe at the Co and Fe K-edges.

Figure S5. MIR spectra of **Na₂CoFe**, **Rb₂CoFe** and **Cs₂CoFe** over the 3400-3800 cm⁻¹ frequency range.

Table S1. Frequency of absorbance maximum, full-width at half maximum and area under peak for the three Gaussian components (*G1*, *G2*, *G3*).

Figure S1. Far-IR spectra of CoFe PBAs of chemical formula $Cs_xCo_4[Fe(CN)_6]_{(8+x)/3} \bullet nH_2O$ at 300 K over the 20-150 cm⁻¹ frequency range, showing the variation of the band associated to the Cs⁺ vibration mode with an increasing Cs⁺ content x (and a decreasing amount of Fe(CN)₆ vacancies).

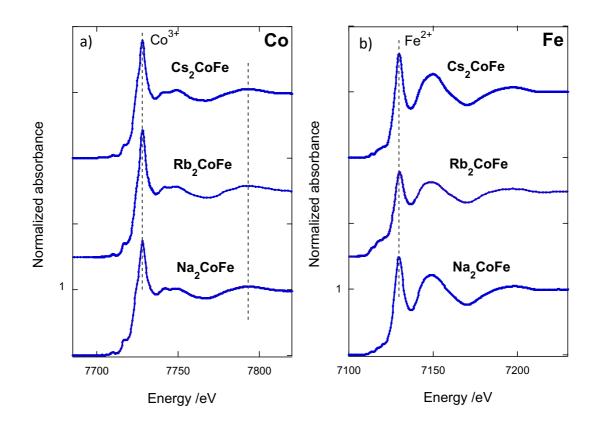

Figure S2. Far-Infrared spectra of Na₂CoFe, Rb₂CoFe and Cs₂CoFe recorded upon cooling.

Figure S3. Far-Infrared spectra of **Rb₂CoFe** at 300K before cooling and after 1 and 2 cooling/heating cycles.

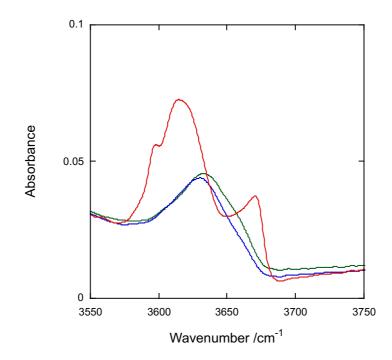


Figure S4. Low temperature X-ray Absorption Near Edge Spectra (XANES) of **Na₂CoFe**, **Rb₂CoFe** and **Cs₂CoFe** a) at the Co K-edge and b) at the Fe K-edge.

The shape of the spectra and the energy of the absorption maxima are characteristic of Co^{III} ions and $Fe^{II}(CN)_6$ entities in CoFe PBAs. The similarity of the spectra shows that all contain the same amount of these species, in line with the $Co^{II}_{0.7}Co^{III}_{3.3}[Fe^{II}(CN)_6]$ chemical formula.

Figure S5. Middle-Infrared spectra of Na₂CoFe (red), Rb₂CoFe (blue) and Cs₂CoFe (green) over the 3400-3800 cm⁻¹ frequency range at 14 K.

The bands situated between 3500 and 3700 cm⁻¹ correspond to stretching vibrations of OH bonds bound to the Co ions. The spectra of **Rb₂CoFe** and **Cs₂CoFe** are much different from the one of **Na₂CoFe**.

Table S1. Frequency of absorbance maximum, full-width at half maximum and area under peak for the three Gaussian components (*G1*, *G2*, *G3*).

	Na₂CoFe			Rb₂CoFe			Cs ₂ CoFe		
	G1	G2	G3	G1	G2	G3	G1	G2	G3
Frequency /cm ⁻¹	541	558	600	539.5	559	601	536.5	557	600
Linewidth /cm ⁻¹	12.7	24.6	23.2	16.2	23.6	22.8	20.2	27.9	22.3
Area /%	47	38.5	14.5	41	42	17	38	45	17