Electronic Supplementary Information

New Fe-Doped Two-dimensional BiVO4 Nanosheets for Direct Methane Conversion to Methyl Oxygenates

Catherine Afriyie^{a, b, *}, Xingwang Zhang^a

^{*a*} College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China. ^{*b*} Department of Chemical Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.

E-mail addresses: 22028182@zju.edu.cn, xwzhang@zju.edu.cn *Corresponding author: 22028182@zju.edu.cn (Catherine Afriyie)

Preparation of BiVO₄ microcrystals

The BiVO₄ microcrystals was prepared by dissolving 3.0 mmol Bi(NO₃)₃·5H₂O in a 20 mL aqueous solution of 2 M HNO₃ and the resultant solution was denoted as A. 3.0 mmol NH₄VO₃ in a 20 mL aqueous solution of 2 M HNO₃ the resultant yellow solution was denoted as solution B. 3 mmol C₁₈H₂₉NaO₃S (SDBS) in a 20 mL aqueous solution of 2 M HNO₃ and the resultant solution was denoted as solution C. Then, solutions A, B and C were mixed together to form a translucent, yellow solution under vigorous stirring. The pH of the combined solution was adjusted to an acid concentration of 1 M by adding deionized water to prevent the salts from precipitating, and stirred continuously for 2 h. The translucent solution was poured into three different 50 mL Teflon-lined stainless-steel autoclaves until 80% of the volume of each autoclave was occupied. The Teflon-lined stainless-steel autoclaves were sealed and heated in an oven at 150 °C for 5 h. After the hydrothermal treatment, the autoclaves were cooled naturally to room temperature. After cooling, each sample was transferred to a centrifuge tube, centrifuged at 10000 rpm for 5 min during each centrifuging cycle by washing with deionized water for three times and once with absolute ethanol. The vivid yellow precipitate obtained was dried in vacuum at 40 °C overnight and calcined at 250 °C for 2 h before collecting the yellow powder for activity test.

Fig. S1. Batch-type photoreactor experimental set-up

Crystalline structure of BiVO₄ microcrystals

Fig. S2 presents the typical XRD pattern of the BiVO₄ microcrystals, which can be indexed well with the pure phase of monoclinic scheelite BiVO₄ (JCPDC card No. 14-0688). Also, the peak splitting around 19° and 35° of the 2 θ angles, magnified in the insets gives clear evidence to differentiate the monoclinic phase of the synthesized product from the tetragonal structure (JCPDS No. 14-0133).

Fig. S2. XRD patterns of BiVO₄ microcrystal. Insets are the enlarged views of peaks around $2\theta = 19^{\circ}$ and 35° .

Photocatalytic performance evaluation

Fig. S3. Schematic illustration of the reaction inside the batch-type reactor vessel.

Fig. S4. Representative ¹H-NMR spectra collected for the methane oxidation products using 100 μL H₂O₂ as the oxidant under 2 h of light irradiation at 40 °C for (a) 1.0-Fe-BiVO₄ and (b) undoped BiVO₄; (c) control experiment without light irradiation.

Electronic Supplementary Information

Table S.1 Summary from literature of the photocatalytic conversion of CH4 to primary
oxygenated products in BiVO4 and other photocatalyst systems in comparison to this work

Ref. #	Catalyst	Oxidant	Gas	Reaction tempera- ture (°C)	Reaction time (min)	Light source	Primary oxygenated products selectivity/%	Primary oxygenated products productivity/ μmolg ⁻¹ h ⁻¹
This work	Fe-BiVO4 nanosheets	100 μL H2O2	CH4	40	120	Visible light (≥ 420 nm)	100	217.6
	BiVO4 nanosheets	100 μL H2O2	CH4	40	120	Visible light (≥ 420 nm)	100	149.6
[1]	WO3 flowers	2 mM H2O2	20% CH4 in N2	50	120	UV-light	-	38.17 ± 3.24
[2]	q-BiVO4 nanoparticles	O2	CH4	25	180	Visible light (400– 780 nm)	96.6	366.67
[3]	FeOOH/m- WO3	1.5 mM H2O2	10% CH4 in N2	25 ± 1	240	visible- light (420– 780 nm)	91.0	211.2
[4]	Bipyramid BiVO4 microcrystals	H2O	10% CH4 in Ar	65	60	Visible light (350– 800 nm)	85.0	111.9
	Thick platelet BiVO4 microcrystals	H ₂ O	10% CH4 in Ar	65	60	Visible light (350– 800 nm)	85.7	79.2

Electronic Supplementary Information

	Thin platelet BiVO4 microcrystals	H ₂ O	10% CH4 in Ar	65	60	Visible light (350– 800 nm)	58.2	65.7
[5]	FeOx/TiO2	2 mM H ₂ O ₂	20% CH4 in Ar	25	180	(≤710 nm)	≥90	352
[6]	BiVO4 + V2O5 on beta zeolite	H ₂ O	20% CH4 in He	70	120	450 W Hg lamp	6.4	10.7
	BiVO ₄ + V ₂ O ₅ on beta zeolite	H2O	20% CH4 in He	70	120	450 W Hg lamp + Pyrex filter	100	3.3
[7]	BiVO4 thick platelets	H ₂ O + NaNO ₂	20% CH4 in He	55	90	450 W Hg-lamp	≥90	11
	BiVO4 thick platelets	H ₂ O	20% CH4 in He	55	90	450 W Hg-lamp	42.0	19.9
[8]	Bi ₂ WO ₆ flowers	H ₂ O	20% CH4 in He	55	120	450 W Hg-lamp	29.3	15.6
	Bi ₂ WO ₆ /TiO ₂ composite	O2	20% CH4 in He	55	120	450 W Hg-lamp	7.9	10.8
	BiVO4 thick platelets	H ₂ O	20% CH4 in He	55	120	450 W Hg-lamp	51.0	20.8

References

- [1] D. Premachandra, M.D. Heagy. Methane 2 (2023) 103–112.
- [2] Y. Fan, W. Zhou, X. Qiu, et al., Nature Sustainability 4 (2021) 509–515.
- [3] J. Yang, J. Hao, J. Wei, et al., Fuel 266 (2020) 117104.
- [4] W. Zhu, M. Shen, G. Fan, et al., ACS Appl. Nano Mater. 1 12 (2018) 6683–6691.
- [5] J. Xie, R. Jin, A. Li, et al., Nature Catalysis 1 (2018) 889–896.
- [6] S. Murcia-López, M.C. Bacariza, K. Villa, et al., ACS Catalysis 7 (2017) 2878-2885.
- [7] S. Murcia-López, K. Villa, T. Andreu, et al., Chemical Communications 51 (2015) 7249-7252.
- [8] S. Murcia-López, K. Villa, T. Andreu, et al., ACS Catalysis 4 (2014) 3013-3019.