Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Title: The human brain-inspired light-stimulated gelatin-biopolymer gated synaptic transistor for realizing cognitive activities.

Bishwajit Mandal^a, M. Raveendra Kiran^{a,b} and Samarendra Pratap Singh^{a*}

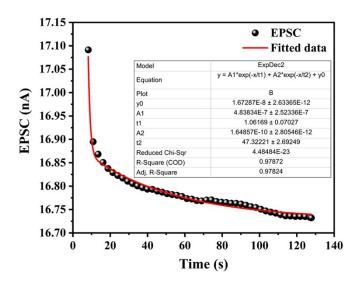
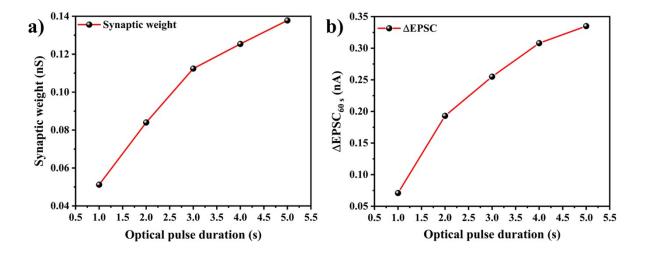
^aDepartment of Physics, Shiv Nadar Institutions of Eminence, Gautam Buddha Nagar, UP-201314, India

^bDepartment of Physics & Innovation and Translational Research Hub (iTRH), Presidency University, Bangalore 560064, Karnataka, India

To whom correspondence should be addressed. Email: samarendra.singh@snu.edu.in

Table of Contents for Supporting Information

1.	Bi-exponential fitting of PPF decay and relaxation time from the fitting data	S3
2.	The variation of synaptic weight and EPSC under optical pulse duration and	nd pulse
	number	S4
3.	The variation of synaptic weight and EPSC under optical pulse intensity	S5
4.	Energy consumption of the OFETs per optical spike	S5

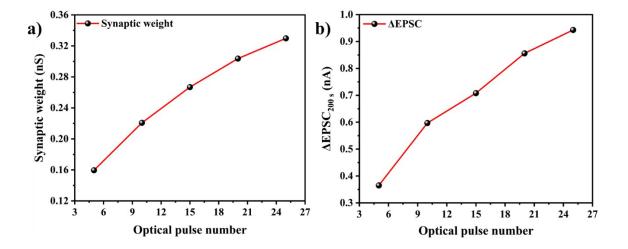
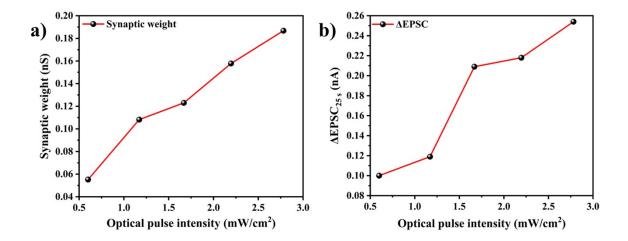

Figure S1: Bi-exponential fitting of the PPF graph

Table S2: The relaxation time from the bi-exponential fitting


Fast phase of relaxation	Slow phase of relaxation
1.06 s	47.32 s

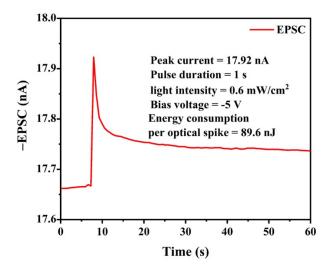

Figure 2S: a) Synaptic weight change of the OFET with respect to the optical pulse duration, b) Photo memory retention change of the EPSC after 60 s with respect to the optical pulse duration.

Figure 3S: a) Synaptic weight change of the OFET with respect to the optical pulse number b) Photo memory retention change of the EPSC after 200 s with respect to the optical pulse number

Figure 4S: a) Synaptic weight change of the OFET with respect to the optical pulse intensity b) Photo memory retention change of the EPSC after 25 s with respect to the optical pulse intensity

Figure S5: Energy consumption of the gelatin-gated PBTTT-C-14-based OFETs per optical pulse (1 s)