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S1. Quantitative analysis of commercial silicone



For Part A, the integration for the terminal vinyl groups was normalised to 6 (6H). The methyl
hydrogens integrated to 110.76, so once divided by the normalised value of 6 (2Me/Si), indicated the
presence of a total 18 methyl groups. This led to the identification of a DP,, of 16 when considering the
terminal ends both likely contain a vinyl substituent and 2 methyl substituents.

For Part B, the vinyl group integration was similarly normalised to 6 for consistency. From this, it was
concluded that there were four hydrogens corresponding to four units of -O-SiHMe. The integration
corresponding to the methyl substituents from Part A was subtracted from Part B's total, isolating the
methyl substituents corresponding to the PHMS-co-PDMS in Part B. Once this value was divided by 3,
it revealed there were 30 methyl groups. Taking into account 4 of these methyl groups associated with
the -O-SiHMe groups and the 2 terminal methyl groups, it was determined that Part B contains 12
repeating PDMS units as show in the structures below.
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Figure S1. '"H NMR spectrum of Gelest elastomer Part A, in CDCls
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Figure S2. '"H NMR spectrum of Gelest elastomer Part B, in CDCl;
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Figure S3. 3C{'H} NMR spectrum of Gelest elastomer Part A, in CDCl;
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Figure S4. 3C{'H} NMR spectrum of Gelest elastomer Part B, in CDCl;.

2600
2400
2200
2000
1800
1600
1400
1200
1000
800

600

400

At A g o mewm-

r-200

(=1

100 90 80 70 60 50 40 30 200 30 40 -50 60 -70 -80 -90 -100

10 0 10
f1 (ppm)

Figure S5.%2°Si NMR spectrum of Gelest elastomer Part A, in CDCls.
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Figure S6.%2°Si NMR spectrum of Gelest elastomer Part B, in CDCls;.
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Figure S7. An example of a GPC chromatogram and associated data of Gelest elastomer Part A using
the refractive index signal as a function of retention time
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Figure S8. An example of a GPC chromatogram and associated data of Gelest elastomer Part B using
the refractive index signal as a function of retention time.

Table S1. DP, determined using NMR spectroscopy as compared to GPC

NM | GPC
R
Polymer DP, | DP, M, [Da] M, [Da] D
Vinyl PDMS 16 |14 1199.4+ 12.36 | 1137.4 £ 12.70 1.054 + 0.0037
PHMS-co-PDMS 4:12 | 4:80r3:9 816.6 + 3.05 812.6 + 4.04 1.005 + 0.0006




S2. Characterisation of X-poly(siloxane-r-S)

Table S2. Elemental analysis of X-poly(siloxane-#-S)

Name

Method | N [%] | C [%] | H S [%] Predicted
[Yo] [S%e]
0-poly(siloxane-r-S) 5Smg90s | O 29.38 | 7.737 |0 0
5-poly(siloxane-7-S) 5Smg90s | O 30.86 | 8.046 | 1.985 4.99
10-poly(siloxane-7-S) | Smg90s | O 31.81 | 8.13 2.117 9.91
15-poly(siloxane--S) | 5Smg90s | 0 28.02 | 7.216 | 11.985 | 14.16
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Figure S9. SS'H NMR spectra of 0-poly(siloxane-r-S) (red) and 10-poly(siloxane-7-S) (blue)
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Figure S10. SS'3C NMR spectra of 0-poly(siloxane-r-S) (red) and 10-poly(siloxane-r-S) (blue)
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Figure S11. SS*Si NMR spectra of 0-poly(siloxane-r-S) (red) and 10-poly(siloxane-7-S) (blue)
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Figure S12. TGA (green, left) and DTG (blue, right) thermogram of 0-poly(siloxane-»-S)
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Figure S13. TGA (green, left) and DTG (blue, right) thermograms of 5-poly(siloxane-#-S)
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Figure S14. TGA (green, left) and DTG (blue, right) thermogram of 10-poly(siloxane-»-S)
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Figure S15. TGA (green, left) and DTG (blue, right) thermogram of 15-poly(siloxane-#-S)
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Figure S16. DSC thermogram of 15-poly(siloxane-7-S) sample showing no T, and an endothermic
peak corresponding to elemental sulfur



S4. Characterisation and property comparison of X-poly(siloxane-r-S) (X =0, 5, 10)
before and after healing

S5. Solubility assessment of X-poly(siloxane-r-S)

We conducted solubility tests on both the control sample 0-poly(siloxane-7-S) and the sulfur-containing
samples X-poly(siloxane-r-S) (X = 5, 10, 15). Due to the clear and transparent nature of the control
sample, it was necessary to use quantitative tests to assess its solubility. For the samples containing
sulfur, visual observations were mainly employed to evaluate the solubility.

Control sample 0-poly(siloxane-r-S) solubility:

The control sample showed signs of swelling in DCM, THF, and Hexane. This indicates some
interaction with these solvents.

The solubility rates in the tested solvents were: THF (0.20%), DMF (0.10%), Hexane (0.21%), DCM
(0.23%), and Acetone (0.12%). These findings suggest limited solubility, likely due to the silicone's
cross-linked structure.

X-poly(siloxane-r-S) solubility:

Samples with sulfur were partially soluble in DMF, indicating some breakdown of the sulfide bonds
within the material using this solvent.!

Like the control sample, sulfur-containing samples also swelled in DCM, THF, and Hexane, showing a
similar interaction pattern across all samples.

These samples did not show any solubility in the solvents, except for DMF, showing a unique behavior
compared to the control sample (Table S3, Figure S18).

Table S3. Solubility of X-poly(siloxane-r-S) compared with 0-poly(siloxane-7-S)

THF DMF Hexane DCM | Acetone
0-poly(siloxane-7-S) Sw Sw Sw Sw Sw
5-poly(siloxane-7-S) Sw P Sw Sw Sw
10-poly(siloxane-7-S) Sw P Sw Sw Sw
15-poly(siloxane-r-S) Sw P Sw Sw Sw

S = soluble; I = insoluble; P = partially soluble; Sw = swells
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Figure S17. Solubility of X-poly(siloxane-7-S) in various solvents
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Figure S18. FTIR spectra for initial (blue) and healed (orange) samples of 5-poly(siloxane--S)

o
o
c
= 10000 | === == - ———— -
=
O
(%]
=
3 | 1000 N ------------
Q
=
c
.8
@ 100 ) L
é 10-poly(siloxane-r-S) initial healed o
T 0-poly(siloxane-r-S) initial after healing attempt . .. .
o
0.1 1 10 100 1000
Timein (s)

Figure S19. Relaxation modulus of 10-poly(siloxane-7-S) before (solid blue line) and after (dotted
blue line) healing as compared to 0-poly(siloxane-7-S) before (solid brown line) and after healing
attempt (dotted brown line).



Figure S20. Image of Part A (vinyl-terminated PDMS) after inverse vulcanisation with 10 wt% sulfur
at 180°C.
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