Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Citric acid-assisted synthesis of FeFe(CN)₆ with reduced defects and high specific surface area for aqueous zinc-sodium hybrid batteries

Chaoqiao Yang^a, Ya Zhao^a, Jiaxin Fan^{b,*}, Lin Li^b, Jinxia Zhou^a , Keliang Wang^b, Fenglian Lu^b, Hongmei Sun^b

^aCollege of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, Liaoning, China

^bSchool of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, 553004, Guizhou, China

*Corresponding author: fmf_fjx@163.com.

Experimental

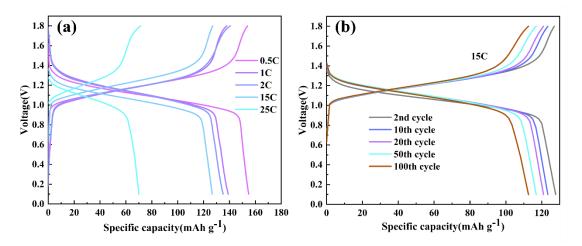
1. Materials and reagents

K₃Fe(CN)₆ (99.5%) was purchased from Shanghai No.1 Reagent Factory. FeCl₃·6H₂O (99%) was purchased from Macklin. Citric acid (C₆H₈O₇·H₂O, 99.5%) was purchased from National Group Chemical Reagent Co., LTD. Na₂SO₄ (99%) and ZnSO₄·7H₂O (99.5%) were purchased from Chengdu Jinshan Chemical Reagent Company. Zinc foil (99.99%, 0.02 mm) was purchased from Alfa Aesar.

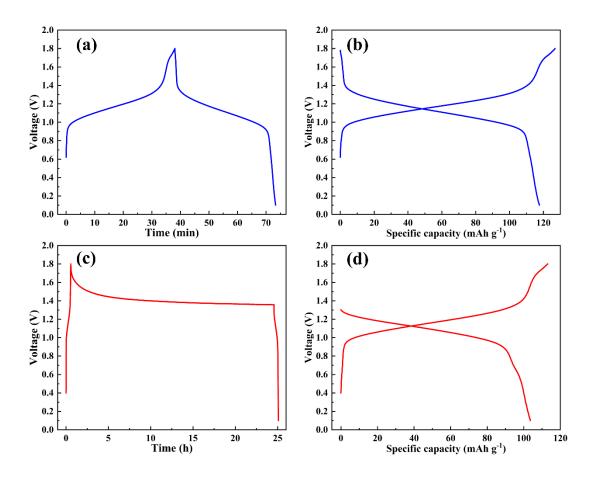
2. Material synthesis

C-FeFe(CN)₆ was synthesized using a controlled crystallization method assisted by citric acid. Usually, 0.01 mol FeCl₃·6H₂O and 0.01 mol C₆H₈O₇·H₂O are dissolved in 50 ml deionized water to form 0.2 mol L⁻¹ citrate³-Fe³⁺ chelating solution. This solution (50 mL) and 0.2 mol L⁻¹ K₃Fe(CN)₆ solution (50 mL) were then added dropwise into 100 mL deionized water for co-precipitation. Thereafter the water bath was stirred at 60 °C for 6 hours. The precipitate was centrifuged, washed several times with deionized water, and finally dried at 80 °C for 12 h.

3. Material characterization


The crystal structure of the synthesized material was analyzed by X-ray diffraction (XRD) using Shimadzu 7000S X-ray diffractometer. The scanning speed was 5 ° min⁻¹ from 10° to 80°. Fourier transform infrared spectroscopy (FTIR) was recorded in transmission mode on an infrared spectrometer (FTIR, Nicolet iS5 type). The water content of the sample was determined by a thermogravimetric analyzer (TG, Netzsch TG/209 F3 Tarsus). The test was carried out under nitrogen protection, the heating rate

was 10 °C min⁻¹, and the heating range was 30-500 °C. Raman spectroscopy was performed on the LabRAM HR Evolution Raman spectrometer using a laser with a wavelength of 532 nm. The morphology and structure were characterized by scanning electron microscopy (SEM, TESCAN MIRA LMS) and transmission electron microscopy (TEM, libra 200). X-ray photoelectron spectroscopy (XPS) measurements were performed on a single Al Kα radiation (Thermo Scientific K-Alphat), and all binding energies were adjusted using the standard signal of carbon at 284.80 eV. The K and Fe elements of the sample were measured by inductively coupled plasma emission spectrometry (ICP-OES, Agilent 5110, USA), and the sample was dissolved in hydrochloric acid. The C and N elements of the sample were measured by elemental analyzer (EA, Elementar UNICUBE, Germany).


4. Electrochemical test

The positive electrode was prepared by mixing the active material, acetylene black and polytetrafluoroethylene at a mass ratio of 7:2:1. The uniformly mixed slurry was coated on the carbon foil current collector and dried at 80 °C for 12 h. After drying, it was cut into 14 mm small discs for subsequent use, and the mass loading of the active material was 1.05 mg cm⁻². The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests were performed at the VersaSTAT 3 electrochemical workstation. The CV tests were carried out using a three-electrode system, in which C-FeFe(CN)₆ was used as the working electrode, and a zinc flake was employed as the counter and reference electrode. The test was performed in the range of 0.5-1.8 V. The EIS test was carried out in the frequency range of 100 kHz to 0.01

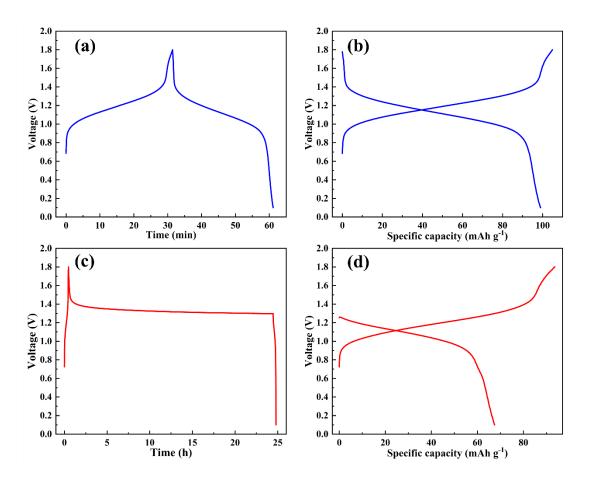

Hz with a potential amplitude of 5 mV. The coin-type cell (CR2025) was prepared by using C-FeFe(CN)₆ as the positive electrode, Zn metal as the negative electrode and glass fiber membrane as the separator. For zinc-sodium hybrid cells, the as-used electrolyte is a mixed solution containing 0.1 M ZnSO₄ and 1 M Na₂SO₄. The rate performance, cycling performance and galvanostatic current charge-discharge performance of the battery were tested in the voltage range of 0.1-1.8 V on the Land 3002A battery test system. In the galvanostatic charge-discharge (GCD) process, cells were initially discharged to 0.1 V, then were charged to 1.8 V, followed by the cycling process.

Fig. S1 (a) Charge-discharge curves at different current densities from 0.5C, 1C, 2C, 15C to 25C; (b) GCD curves of different cycle times.

Fig. S2 Self-discharge performance evaluations of the C-FeFe(CN)₆. (a) Voltage-time and (b) voltage-specific capacity without resting; (c) voltage-time and (d) voltage-specific capacity for resting 24 h.

Fig. S3 Self-discharge performance evaluations of the FeFe(CN)₆ electrode. (a) Voltage-time and (b) voltage-specific capacity without resting; (c) voltage-time and (d) voltage-specific capacity resting for 24 h.

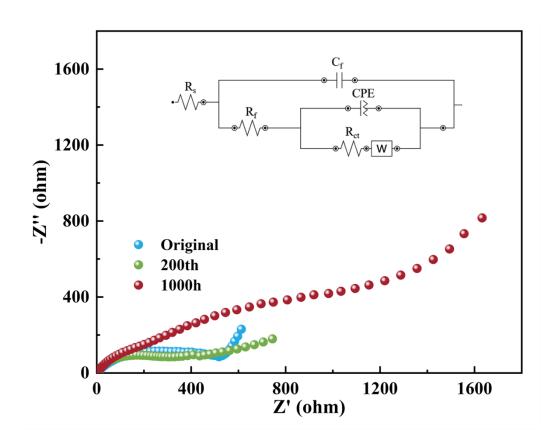


Fig. S4 EIS curves under different cycles of the FeFe(CN)₆.

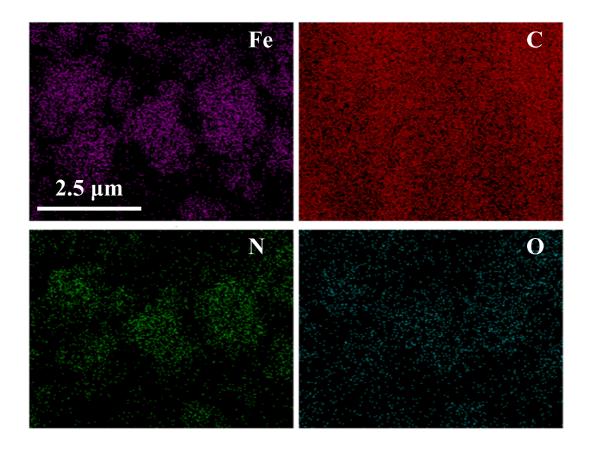


Fig. S5 EDS elemental mappings of the FeFe(CN)₆.

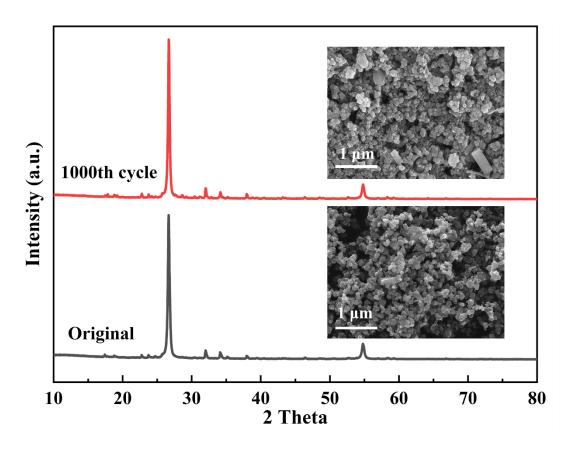


Fig. S6 XRD patterns and SEM images of FeFe(CN)₆ electrode before and after cycling.

Table S1 Comparison of BET data of C-FeFe(CN)₆ and FeFe(CN)₆.

Materials	S _{BET} (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)	Average pore size (nm)	Maximum pore volume (cm ³ g ⁻¹)
C-FeFe(CN) ₆	406.625	0.251	2.472	0.207
FeFe(CN) ₆	28.143	0.036	5.056	0.012

Table S2 Elemental contents of C-FeFe(CN) $_6$ and FeFe(CN) $_6$ samples.

Methods	ICP-OES		Elemental analysis		TG
Materials	K	Fe	C	N	H ₂ O
C-FeFe(CN) ₆	2.60	37.08	20.65	24.78	14.89
FeFe(CN) ₆	0	39.64	20.31	24.21	15.84

Table S3 The measurement results of C-FeFe(CN) $_6$ EIS data.

Components	Original	200th	1000th
$R_{s}(\Omega)$	1.14	1.07	0.83
$C_{f}(F)$	4.49*10-4	2.95*10 ⁻⁵	7.39*10-6
$\mathrm{R_{f}}\left(\Omega ight)$	7.53	3.56	7.71
Q-Y _o	4.35*10-4	1.53*10-4	3.49*10-4
Q-n	0.58	0.74	0.57
$R_{ct}\left(\Omega\right)$	804.5	548.6	244.0
\mathbf{W}	4.44*10-3	2.30*10-3	2.93*10-3

Table S4 The fitting results of C-FeFe(CN) $_6$ EIS data according to the equivalent circuit of [R(C[R(Q[RW])])], fitted by Zsimpwin software.

Components	Original	200th	1000th
$R_{s}(\Omega)$	1.14	1.07	0.83
$C_{f}(F)$	4.49*10-6	2.95*10-6	7.39*10 ⁻⁶
$\mathrm{R_{f}}\left(\Omega ight)$	7.52	3.56	7.71
Q-Y _o	4.35*10-4	1.53*10-4	3.49*10-4
Q-n	0.58	0.74	0.57
$R_{ct}\left(\Omega\right)$	804.5	548.7	244.0
W	4.44*10-3	2.30*10-3	2.93*10-3

Table S5 The fitting results of $FeFe(CN)_6$ EIS data according to the equivalent circuit of [R(C[R(Q[RW])])], fitted by Zsimpwin software.

Components	Original	200th	1000th
$R_{s}(\Omega)$	3.74	0.66	0.74
$C_{f}(F)$	4.43*10-6	7.46*10-6	5.93*10-6
$\mathrm{R_{f}}\left(\Omega ight)$	4.93	5.99	6.98
Q-Y _o	3.70*10-4	3.17*10-4	1.97*10-4
Q-n	0.53	0.64	0.60
$R_{ct}(\Omega)$	500.7	356.7	1112
W	1.65*10-2	9.70*10-3	1.03*10-2

Table S6 Comparison of the electrochemical performances of the Zn//C-FeFe(CN)₆ with other reported aqueous batteries.

Materials	Electrolyte	Specific capacity at x A	Capacity retention at y A g ⁻¹ after n cycles	Ref.
Na//Na ₂ CoFe(CN) ₆	1 M Na ₂ SO ₄	128 (<i>x</i> =0.13)	90% (n=800, y=2.6)	1
Na//Na ₂ CoFe(CN) ₆	1 M NaClO ₄	153 (<i>x</i> =0.01)	90% (n=200, y=0.1)	2
Na//Na _{1.70} FeFe(CN) ₆	1 M NaClO ₄	120.7 (<i>x</i> =0.2)	75% (<i>n</i> =100, <i>y</i> =0.2)	3
Na//Na _{1.87} NiMnFe(CN) ₆	1 M NaPF ₆	120 (x=0.05)	91% (<i>n</i> =400, <i>y</i> =0.1)	4
Zn//C-FeFe(CN) ₆	0.1 M ZnSO ₄ +1 M	162.5 (<i>x</i> =0.02)	999/ (2000)	This
	Na_2SO_4		88% (n=200, y=9)	work

Table S7 Comparison of the electrochemical performances of the Zn//C-FeFe(CN)₆ with other reported Zinc-ion batteries.

Materials	Electrolyte	Specific capacity at x A g ⁻¹	Capacity retention at $y ext{ A g}^{-1}$ after n cycles	Ref.
FeFe(CN) ₆	aqueous HCZLE electrolyte	60 (<i>x</i> =1)	73% (<i>n</i> =10000, <i>y</i> =3)	5
FeFe(CN) ₆	1.0 M Zn(OAc) ₂ /([Ch]OAc+30 wt% water mixtures	120 (x=0.01)	94% (<i>n</i> =10, <i>y</i> =0.01)	6
FeFe(CN) ₆	K/Zn (3:3) hybrid electrolyte	169.2 (<i>x</i> =0.1)	57% (n=1000, y=1)	7
C-FeFe(CN) ₆	0.1 M ZnSO ₄ +1 M Na ₂ SO ₄	162.5 (<i>x</i> =0.02)	66% (n=1000, y=9)	This work

Supplementary References:

- 1 X. Wu, M. Sun, S. Guo, J. Qian, Y. Liu, Y. Cao, X. Ai and H. Yang, Vacancy-Free Prussian Blue Nanocrystals with High Capacity and Superior Cyclability for Aqueous Sodium-Ion Batteries, *ChemNanoMat*, 2015, **1**, 188–193.
- 2 X. Wu, C. Wu, C. Wei, L. Hu, J. Qian, Y. Cao, X. Ai, J. Wang and H. Yang, Highly Crystallized Na₂CoFe(CN)₆ with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion

- Batteries, ACS Appl. Mater. Interfaces, 2016, 8, 5393-5399.
- 3 Y. Liu, Y. Qiao, W. Zhang, Z. Li, X. Ji, L. Miao, L. Yuan, X. Hu and Y. Huang, Sodium storage in Na-rich Na_xFeFe(CN)₆ nanocubes, *Nano Energy*, 2015, **12**, 386–393.
- 4 R. Chen, Y. Huang, M. Xie, Z. Wang, Y. Ye, L. Li and F. Wu, Chemical Inhibition Method to Synthesize Highly Crystalline Prussian Blue Analogs for Sodium-Ion Battery Cathodes, *ACS Appl. Mater. Interfaces*, 2016, **8**, 31669–31676.
- 5 Q. Yang, F. Mo, Z. Liu, L. Ma, X. Li, D. Fang, S. Chen, S. Zhang and C. Zhi, Activating C-Coordinated Iron of Iron Hexacyanoferrate for Zn Hybrid-Ion Batteries with 10 000-Cycle Lifespan and Superior Rate Capability, *Advanced Materials*, 2019, **31**, 1901521.
- 6 Z. Liu, G. Pulletikurthi and F. Endres, A Prussian Blue/Zinc Secondary Battery with a Bio-Ionic Liquid–Water Mixture as Electrolyte, *ACS Appl. Mater. Interfaces*, 2016, **8**, 12158–12164.
- 7 G. Ni, Z. Hao, G. Y. Zou, F. H. Cao, L. Qin and C. G. Zhou, High-Performance Aqueous Rechargeable K/Zn Hybrid Batteries Based on Berlin Green Cathode Materials, ChemElectroChem, 2022, 9, e202101351.