Supporting information

Engineering of efficient functionalization in a zirconium-hydroxyl-based metal-organic framework for ultra-high adsorption of Pb2+ ion from an aqueous medium: an elucidated uptake mechanism

Hang M. N. Pham,a Anh V. N. Phan,a Anh N. T. Phan,a Vi P. Nguyen,a Khang M. V. Nguyen,a Hung N. Nguyen,a Thai M. Nguyena and My V. Nguyen*a

aFaculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam.

*To whom correspondence should be addressed: mynv@hcmue.edu.vn

Keywords: OH-modified Zr-MOFs, Adsorption of Pb2+, Heavy metal ion, Uptake mechanism, Treatment of wastewater.
Figure S1. 1H-NMR spectrum of H$_2$NDC(OH) linker in DMSO solvent
Figure S2. 13C-NMR spectrum of $\text{H}_2\text{NDC(OH)}$ linker in DMSO solvent
Figure S3. Mass spectroscopy of H$_2$NDC(OH) linker
Figure S4. The relationship between the absorbed intensity of Pb$^{2+}$ and various concentrations of 0 - 20 mg L$^{-1}$ by linear fitting
Figure S5. The structure of the Zr-bcu-NDC backbones is constructed from the \(\text{Zr}_6\text{O}_8(\text{H}_2\text{O})_8(\text{CO}_2)_8 \) SBU\text{s with the H\text{2}NDC linker. Atom colors: Zr polyhedra, green; C, black; O, red. All H atoms are omitted for clarity.
Figure S6. Raman spectrum of activated HCMUE-2 (red) in comparison with H$_2$NDC(OH) linker (black)
Figure S7. The FT-IR spectrum of HCMUE-2 (red) in comparison with H$_2$NDC(OH) (black)
Figure S8. The effect of the initial pH on the final pH for determining pH_{pzc} of HCMUE-2. In detail, HCMUE-2 (150 mg) was introduced to 100 mL of glass bottles containing 50 mL of 0.01 M NaCl solutions with different initial pH ranges (pH_i) from 2 to 11. The mixtures were stirred for 48 h. The final pH value (pH_f) of the solutions was recorded using a pH meter. The intersection points between pH_i and pH_f values exhibited the pH_{pzc} value.
Figure S9. Effect of low initial concentrations on the adsorption uptake of Pb$^{2+}$ over HCMUE-2 \([m = 15 \text{ mg}, V = 100 \text{ mL}, C_0: 10 - 50 \text{ mg L}^{-1}, \text{pH} = 5.5, t = 24 \text{ h}] \) (a); The kinetic curve for the adsorption of Pb$^{2+}$ at low concentrations onto HCMUE-2 \([m = 5 \text{ mg}, V = 50 \text{ mL}, C_0 = 10 \text{ mg L}^{-1}, t = 1 - 60 \text{ min}, \text{pH} = 5] \) (b)
Adsorption kinetics

The pseudo-first-order, pseudo-second-order, and intra-particle diffusion models are determined the equations (S1), (S2), and (S3):

\[q_t = q_e \cdot (1 - e^{-k_1 t}) \] \hspace{1cm} (S1)

\[\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e} \] \hspace{1cm} (S2)

\[q_t = k_i t^{1/2} + c \] \hspace{1cm} (S3)

Where q_t (mg g\(^{-1}\)) and q_e (mg g\(^{-1}\)) symbolize the Pb\(^{2+}\) adsorption capacity at t and equilibrium time, respectively. k_1 (min\(^{-1}\)), k_2 (g mg\(^{-1}\) min\(^{-1}\)), and k_i (g mg\(^{-1}\) min\(^{-1}\)) represent the rate constants of pseudo-first-order, pseudo-second-order, and intra-particle diffusion models, and c is the constant, exhibiting the boundary layer thickness.