Supporting information

Engineering of efficient functionalization in a zirconium-hydroxylbased metal-organic framework for ultra-high adsorption of Pb²⁺ ion from an aqueous medium: an elucidated uptake mechanism

Hang M. N. Pham,^a Anh V. N. Phan,^a Anh N. T. Phan,^a Vi P. Nguyen,^a Khang M. V. Nguyen,^a Hung N. Nguyen,^a Thai M. Nguyen^a and My V. Nguyen^{*a}

^a Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam.

*To whom correspondence should be addressed: <u>mynv@hcmue.edu.vn</u>

<u>**Keywords</u>**: OH-modified Zr-MOFs, Adsorption of Pb^{2+} , Heavy metal ion, Uptake mechanism, Treatment of wastewater.</u>

Figure S1. ¹H-NMR spectrum of H₂NDC(OH) linker in DMSO solvent

Figure S2. ¹³C-NMR spectrum of H₂NDC(OH) linker in DMSO solvent

Figure S3. Mass spectroscopy of H₂NDC(OH) linker

Figure S4. The relationship between the absorbed intensity of Pb^{2+} and various concentrations of 0 - 20 mg L⁻¹ by linear fitting

Figure S5. The structure of the Zr-bcu-NDC backbones is constructed from the $Zr_6O_8(H_2O)_8(CO_2)_8$ SBUs with the H_2NDC linker. Atom colors: Zr polyhedra, green; C, black; O, red. All H atoms are omitted for clarity.

Figure S6. Raman spectrum of activated HCMUE-2 (red) in comparison with H₂NDC(OH) linker (black)

Figure S7. The FT-IR spectrum of HCMUE-2 (red) in comparison with H₂NDC(OH) (black)

Figure S8. The effect of the initial pH on the final pH for determining pH_{pzc} of HCMUE-2. In detail, HCMUE-2 (150 mg) was introduced to 100 mL of glass bottles containing 50 mL of 0.01 M NaCl solutions with different initial pH ranges (pH_i) from 2 to 11. The mixtures were stirred for 48 h. The final pH value (pH_f) of the solutions was recorded using a pH meter. The intersection points between pH_i and pH_f values exhibited the pH_{pzc} value

Figure S9. Effect of low initial concentrations on the adsorption uptake of Pb^{2+} over HCMUE-2 [m = 15 mg, V = 100 mL, C_o: 10 - 50 mg L⁻¹, pH = 5.5, t = 24 h] (a); The kinetic curve for the adsorption of Pb^{2+} at low concentrations onto HCMUE-2 [m = 5 mg, V = 50 mL, C_o = 10 mg L⁻¹, t = 1 - 60 min, pH = 5] (b)

Adsorption kinetics

The pseudo-first-order, pseudo-second-order, and intra-particle diffusion models are determined the equations (S1), (S2), and (S3):

$$q_t = q_e.(1 - e^{-k_1 t})$$
 (S1)

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$
(S2)

$$q_t = k_i t^{1/2} + c$$
 (S3)

Where $q_t (mg g^{-1})$ and $q_e (mg g^{-1})$ symbolize the Pb²⁺ adsorption capacity at t and equilibrium time, respectively. $k_1 (min^{-1})$, $k_2 (g mg^{-1} min^{-1})$, and $k_i (g mg^{-1} min^{-1})$ represent the rate constants of pseudo-first-order, pseudo-second-order, and intra-particle diffusion models, and c is the constant, exhibiting the boundary layer thickness.