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SM: RESOLUTION WD: 5.69 mm MIRA3 TESCAN

SEM MAG: 27.7T kx  View field: 10.00 pm 2 ym
Det: SE SEM HV: 5.0 kV
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Det: SE SEM HV: 5.0 kv

Figure S1: Representative SEM images for the monoliths () 10,0U10-66-NH;,-30%-B and (b)
monoU10-66-NH,-30%-A, contrasting the smoothness of the surface of the monolith before
thermolysis (a) compared to after thermolysis (b).

SM: RESOLUTION WD: 6.37 mm SM: RESOLUTION WD: 5.69 mm

SEM MAG: 5.54 kx View field: 50.0 ym 10 pm SEM MAG: 5.54 kx View field: 50.0 ym 10 pm
Det: SE SEM HV: 5.0 kV Det: SE SEM HV: 5.0 kV

Figure S2: Representative low magnification SEM images for the monoliths (@) 1,0n0U10-66-
NH,-30%-B and (b) 1,0n0Ui0-66-NH,-30%-A, contrasting the smoothness of the surface of the
monolith before thermolysis (a) compared to after thermolysis (b).
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Figure S3: Representative low magnification TEM images of (a) ponoU10-66-NH,-30%-B
and (b) menoU10-66-NH,-30%-A.

(b)

Figure S4: Representative TEM images of (2) 1monoU10-66-NH,-30%-B and (b) 11,00 U10-66-
NH,-30%-A.
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Figure S5: SEM-EDX plot for 1,,,,U10-66-NH;-30%-B. Inset: Area scanned. The sample
was sputter-coated with Cr for analysis.
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Figure S6: EDX elemental mapping showing how the elements are dispersed in ;;,0,,U10-66-
NH,-30%-B: (a) carbon, (b) oxygen, (c) composite map, (d) zirconium. All the elements are
evenly dispersed throughout the monolith, as shown in (¢).
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Figure S7: SEM-EDX plot for ;;,,,oU10-66-NH;-30%-A. Inset: Area scanned. The sample
was sputter-coated with Cr for analysis.
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Figure S8: EDX elemental mapping showing how the elements are dispersed in ,n,Ui0-66-
NH,-30%-A: (a) carbon, (b) oxygen, (c) composite map, (d) zirconium, and (e) chlorine. All
the elements are evenly dispersed throughout the monolith, as shown in (c).
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Figure S9: 'H NMR spectrum of ,,,,,UiO-66-NH,-30%-B (500.200 MHz). Spectrum recorded
at 27 °C, using DMSO-d¢ solvent after sample was initially digested in concentrated D,SO,.

Inset: Expansion of the region ¢ 8.2-7.3 ppm.
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Figure S10: 'H NMR spectrum of 1,0,0,Ui0-66-NH,-30%-A (500.200 MHz). Spectrum
obtained at 27 °C, using DMSO-d¢ solvent after sample was initially digested in concentrated
D,S0O,. Inset left: Expansion of the region ¢ 8.5-0.0 ppm. Inset right: Expansion of the aromatic
region suggesting non-zero levels of BDC-NH; after thermolabilization.
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Figure S11: BC('H) NMR spectrum of ,4,,Ui0-66-NH,-30%-B (125.775 MHz). Spectrum
obtained at 27 °C, using DMSO-d solvent after sample was initially digested in concentrated

D,S0s,.
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Figure S12: BC('H) NMR spectrum of ,,,,UiO-66-NH,-30%-A (125.775 MHz). Spectrum
obtained at 27 °C, using DMSO-d solvent after sample was initially digested in concentrated
D,SO,.
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Figure S13: Stacked 3C('H) NMR spectra of ;,,,,,UiO-66-NH,-30%-B (blue) and 0,0 UiO-

66-NH,-30%-A (red) shown in Figures S11-S12.

Table S1: Nanoindentation data for ;,0,,U10-66-NH5-30%-B and ;,5,,U10-66-NH,-30%-A.
The average values and standard deviations were determined from 32 measurements.

SAMPLE MAX DEPTH | INDENTATION HARDNESS
(NM) MODULUS (GPa) | (MPa)
1000 6.09+0.18 185+ 10
nonoUi0-66-NH,-30%-B
2000 5.98 +0.24 180 + 14
1000 4.80 £ 0.25 169 £ 16
onoUi0-66-NH,-30%-A
2000 4.58 £ 0.20 155 +13
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Figure S14: Low pressure N, gas adsorption data for isotherms measured at 77 K for (a)
monoU10-66-NH,-30%-B (solid triangles represent adsorption, and open triangles denote
desorption); (b) monoU10-66-NH,-30%-A (solid squares represent adsorption, and open squares
denote desorption).
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Figure S15: Load-displacement (P-4) nanoindentation data for ,0,,U10-66-NH,-30%-B. 2 sets
of 16 indents were performed in different areas, setting the maximum indentation depth to 1000
nm. The highly reproducible P-4 data reflect the homogeneity of the sample tested.
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Figure S16: Hardness of ,,,,,U10-66-NH,-30%-B plotted as a function of indentation depth. 2
sets of 16 indents were performed. Averaged hardness was determined using data collected
over the 500-1000 nm indentation depth range, yielding 185 + 10 MPa.
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Figure S17: Indentation modulus, E*, of ,0,0UiO-66-NH,-30%-B plotted as a function of
indentation depth. 2 sets of 16 indents were performed. Averaged indentation modulus was

determined using data collected over the 500-1000 nm indentation depth range, yielding 6.09
+0.18 GPa.
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Figure S18: Load-displacement (P-/) nanoindentation data for ,0,0U10-66-NH,-30%-B. 2 sets
of 16 indents were performed in different areas, setting the maximum indentation depth to 2000
nm. The highly reproducible P-4 data reflect the homogeneity of the sample tested.
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Figure S19: Hardness of ;,,,,U10-66-NH;-30%-B plotted as a function of indentation depth. 2
sets of 16 indents were performed. Averaged hardness was determined using data collected
over the 500-2000 nm indentation depth range, yielding 180 + 14 MPa.
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Figure S20: Indentation modulus, E*, of ;,,,,Ui0-66-NH,-30%-B plotted as a function of
indentation depth. 2 sets of 16 indents were performed. Averaged indentation modulus was

determined using data collected over the 500-2000 nm indentation depth range, yielding 5.98 +
0.24 GPa.

S14



Load (mN)
N

0 200 400 600 800 1000
Depth (nm)

Figure S21: Load-displacement (P-4) nanoindentation data for 1,0,0Ui0-66-NH,-30%-A. 2
sets of 16 indents were performed in different areas, setting the maximum indentation depth to
1000 nm. The highly reproducible P-4 data reflect the homogeneity of the sample tested.
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Figure S22: Hardness of ,0,,U10-66-NH,-30%-A plotted as a function of indentation depth. 2
sets of 16 indents were performed. Averaged hardness was determined using data collected
over the 500-1000 nm indentation depth range, yielding 169 + 16 MPa.
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Figure S23: Indentation modulus, E*, of ,0,0,Ui0-66-NH,-30%-A plotted as a function of
indentation depth. 2 sets of 16 indents were performed. Averaged indentation modulus was

determined using data collected over the 500-1000 nm indentation depth range, yielding 4.80
+0.25 GPa.
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Figure S24: Load-displacement (P-4) nanoindentation data for ,,0,0Ui0-66-NH,-30%-A. 2
sets of 16 indents were performed, setting the maximum indentation depth to 2000 nm. The
highly reproducible P-4 data reflect the homogeneity of the sample tested.
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Figure S25: Hardness of ,0,,U10-66-NH,-30%-A plotted as a function of indentation depth. 2
sets of 16 indents were performed. Averaged hardness was determined using data collected
over the 500-2000 nm indentation depth range, yielding 155 + 13 MPa.
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Figure S26: Indentation modulus, E*, of ,,,,Ui0-66-NH,-30%-A plotted as a function of
indentation depth. 2 sets of 16 indents were performed. Averaged indentation modulus was

determined using data collected over the 500-2000 nm indentation depth range, yielding 4.58
+ (.20 GPa.
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Figure S27: DVS water sorption kinetics over three isotherm cycles for 4,,U10-66-NH;-30%-
B using Intrinsic-DVS instrument at 27 °C. The sample was heated for 6 h at 40 °C and 0%

RH between cycles.
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Figure S28: Triplicated DVS water sorption isotherms for p,0,0U10-66-NH,-30%-B using
Intrinsic-DVS instrument at 27 °C. The sample was heated for 6 h at 40 °C and 0% RH between

cycles.
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Figure S29: Triplicated DVS water sorption isotherms for ;;,,,,U10-66-NH,-30%-A at 27 °C.
The sample was heated for 6 h at 40 °C and 0% RH between cycles.
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Figure S30: DVS water sorption kinetics over three isotherm cycles for ,0,0U10-66-NH,-
30%-A at 27 °C. The sample was heated for 6 h at 40 °C and 0% RH between cycles.
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