Supporting information for

Topology Effects in Photodynamic Therapy with Phthalocyanine Nanocarriers

Davide Arena,^a Ümit İşci,^b Mélanie Onofre,^c Christophe Nguyen,^c Zeynel Şahin,^b Ester Verde-Sesto,^{a,d} Amaia Iturrospe,^a Arantxa Arbe,^a Magali Gary-Bobo,^{*,c} José A. Pomposo,^{*,a,d,e} and Fabienne Dumoulin^{*,f}

^a Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel Lardizabal 5, 20018 Donostia, Spain

^b Marmara University, Faculty of Technology, Department of Metallurgical and Materials Engineering, Istanbul, Türkiye

^c Institut des Biomolécules Max Mousseron, CNRS, ENSCM, 34293 Montpellier, France ^d IKERBASQUE - Basque Foundation for Science, Plaza de Euskadi 5, 48009 Bilbao, Spain

^e Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, University of the Basque Country (UPV/EHU), 20800 Donostia, Spain ^f Acıbadem Mehmet Ali Aydınlar University, Faculty of Engineering and Natural Sciences, Department of Biomedical Engineering, Istanbul, Türkiye

*E-mails: <u>magali.gary-bobo@inserm.fr</u>, josetxo.pomposo@ehu.eus, <u>fabienne.dumoulin@acibadem.edu.tr</u>

Table of contents

Figure S1. ¹ H NMR spectrum of phthalonitrile 1 (CDCl ₃)	3
Figure S2. ¹³ C NMR spectrum of phthalonitrile 1 (CDCl ₃)	3
Figure S3. FT-IR spectrum of phthalonitrile 1	4
Figure S4. ¹ H NMR spectrum of phthalocyanine Pc2 (DMSO-d ₆)	4
Figure S5. FT-IR spectrum of phthalocyanine Pc2	5
Figure S6. MALDI-MS spectrum of phthalocyanine Pc2	5
Figure S7. Top: UV-vis spectrum of phthalocyanine Pc2 in THF (2-12 μ M).	6
Bottom: absorbance values vs concentration.	
Figure S8. UV spectra of blank nanocarriers in water	7
Table S1. Corresponding values of Pc2 encapsulated in nanocarriers SLA or	7
SCNP.	
Figure S9. UV-Vis absorption spectra of $SCNP-Pc2_x$ aggregates in water and in	8
THF. After removal of water via lyophilization of the corresponding aqueous	
samples, the measurements in the disaggregating, organic solvent were carried	
out by replacement with equal volumes of THF.	
Figure S10. UV-Vis absorption spectra of $SLA-Pc2_x$ aggregates in water and in	9
THF. After removal of water via lyophilization of the corresponding aqueous	
samples, the measurements in the disaggregating, organic solvent were carried	
out by replacement with equal volumes of THF.	

Figure S11. Cytotoxicity and PDT studies of Pc2.				10

Figure S12. ROS production by SLA-Pc2 ₁₂ and Pc2	11	l
---	----	---

Figure S1. ¹H NMR spectrum of phthalonitrile 1 (CDCl₃)

Figure S2. ¹³C NMR spectrum of phthalonitrile 1 (CDCl₃)

Figure S3. FT-IR spectrum of phthalonitrile 1

Figure S4. ¹H NMR spectrum of phthalocyanine Pc2 (DMSO-d₆)

Figure S5. FT-IR spectrum of phthalocyanine Pc2

Figure S6. MALDI-MS spectrum of phthalocyanine Pc2

Figure S7. Top: UV-vis spectrum of Pc2 in THF (2-12 μ M). Bottom: absorbance values vs concentration

Figure S8. UV spectra of blank nanocarriers in water.

Table S1. Amounts of Pc2 encapsulated in SLA or SCNP nanocarriers

SLA-Pc2 _x or SCNP-P _C 2 _x (μ g/ml)	1	10	50	100	200
Pc2 ₅ (µg/ml)	0.005	0.05	0.25	0.5	1
Pc2 ₅ (μM)	0.0005	0.005	0.025	0.05	0.1
Pc2 ₁₂ (μg/ml)	0.012	0.12	0.6	1.2	2.4
Pc2 ₁₂ (μM)	0.0012	0.012	0.06	0.12	0.24

Figure S9. UV-Vis absorption spectra of $SCNP-Pc2_x$ aggregates in water and in THF. After removal of water *via* lyophilization of the corresponding aqueous samples, the measurements with equal volumes of THF inducing the in the disruption of the nanoparticles and the monomerization of the phthalocyanines

Figure S10. UV-Vis absorption spectra of $SLA-Pc2_x$ aggregates in water and in THF. After removal of water *via* lyophilization of the corresponding aqueous samples, the measurements with equal volumes of THF inducing the in the disruption of the nanoparticles and the monomerization of the phthalocyanines

Figure S11. (A) Cell viability study of MCF-7 cells incubated 72 h with increasing concentrations (from 0.005 to 10 μ g.mL⁻¹) of **Pc2**. (B) PDT effect of **Pc2** (at 0.5 and 1.2 μ g.mL⁻¹) incubated 24 h with MCF-7 cells and excited at 633, 650 and 740 nm.

Figure S12. Detection of intracellular reactive oxygen production (ROS) realized using DCFDA-Cellular ROS Detection Assay Kit (Abcam). MCF-7 cells were seeded on 96 wells plate and incubated 24 h with **SLA-Pc2₁₂** at 100 μ g.ml⁻¹ and **Pc2** at 1.2 μ g.ml⁻¹. 45 min before irradiation, cells were incubated at 37°C with DCFDA (2,7-dichlorofluorescein diacetate) at 20 μ M and submitted or not to laser irradiation at 650 nm during 20 min. Pictures were performed on EVOS M5000 Cell imaging system at 482/25 nm wavelength excitation at 20X magnification. Green luminescence results from the generation of ROS.