Supplementary Information

Bio-Inspired 3D Printing of Layered Structures Utilizing Stabilized Amorphous Calcium Carbonate within Biodegradable Matrices

Hadar Shaked ^a, Daniela Dobrynin ^a, Iryna Polishchuk ^a, Alexander Katsman^a, Boaz Pokroy ^a

(a) Department of Materials Science and Engineering and the Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, 32000, Haifa, Israel.

*Corresponding author, Email Address: bpokroy@technion.ac.il

Figure S1 - BST measurements of various collagen concentrations, a plateau was reached after incorporation of 15%w/w

Figure S2 – XRD patterns were collected at a wavelength of Cu K α 1.546Å 3 years after preparation. The diffraction peaks stem from NaCl byproducts; a calcite diffractogram is presented for reference

Index	Area	AreaIntgP(%)	Row Index	Beginning X	Ending X	FWHM	Center	Height
1	5.00E-04	100	683	0	0.00192	7.01E-04	0.00192	0.67513

Figure S4 – An example of Young's modulus and strain energy calculations done using OriginPro 2019. The given 60 $^{/}40_{CGN15\%}$ model, with a Young's modulus of 492.3387 [MPa] and 5 $\cdot 10^{-4}$ [J] strain energy. example is of a

Figure S5 - Example of Single slice pore analysis on scanned printed models, including size distribution of pores. (A) pores 60/40CGN15% model and pores distribution in the single slices, (B) pores in 50/50CGN15% model and pores distribution in the single slices, and (C) pores in LP2 model and pores distribution in the single slices.