Supporting Information

Unraveling the Sorption Mechanism of Industrial Dyes onto Zr-based MOF: a Computational and Experimental Modelling for Highly Efficient Removal

Kora Lucresse Tiomo Nguena^{1,2}, Cyrille Ghislain Fotsop^{1,3}, Aurelien Bopda¹, Donald Raoul Tchuifon Tchuifon^{1,4}, Fredy Harcel Kamgang Djioko^{2,5}, Alvine Mirabelle Soukoua Ngueabouo¹, Chinyere Ada Madu², Fabian I. Ezema^{2,6}, Emeka Emmanuel Oguzie²

N°	Time	Concentration	II	Masse
	(min)	(mg/L)	рп	(mg)
1.	30	20	2	20
2.	120	20	2	20
3.	30	200	2	20
4.	120	200	2	20
5.	30	20	10	20
6.	120	20	10	20
7.	30	200	10	20
8.	120	200	10	20
9.	30	20	2	80
10.	120	20	2	80
11.	30	200	2	80
12.	120	200	2	80
13.	30	20	10	80
14.	120	20	10	80
15.	30	200	10	80
16.	120	200	10	80
17.	30	110	6	50
18.	120	110	6	50
19.	75	20	6	50
20.	75	200	6	50
21.	75	110	2	50
22.	75	110	10	50
23.	75	110	6	20
24.	75	110	6	80
25.	75	110	6	50
26.	75	110	6	50
27.	75	110	6	50
28.	75	110	6	50

Table S1 : Central composite design for the adsorption of indigo carmine, rhodamin B and orange 2.

 Table S2: Kinetic models in nonlinear forms

Kinetic models	Non-linear forms	Reference
Pseudo-first order	$Q_t = Q_e \left[1 - exp^{\text{ind}}(-K_1 t) \right]$	1

Pseudo-second order	$Q_t = \frac{Q_e^2 K_2 t}{1 + Q_e K_e t}$	1
Elovich model	$Q_t = \frac{\ln(\alpha\beta)}{\beta} + \frac{\ln t}{\beta}$	1
Intraparticle diffusion	$Q_t = K_{\rm int} t^{\frac{1}{2}} + C$	1

Table S3: Non-linear isotherms models forms

Parameters	Isotherms	Non-linear forms	References
	Langmuir	$Q_e = \frac{Q_m K_L C_e}{1 + K_L C_e}$	2
Two			
	Freundlich	$Q_e = K_F C e^{\frac{1}{n}}$	2
Three	Toth	$Q_{e} = \frac{Q_{m}K_{T}C_{e}}{\left[1 + (K_{T}C_{e})^{n}\right]^{1/n}}$	3

Langmuir separation factor (R_L) :
$$R_L = \frac{1}{1 + K_L C_0}$$

Eq.S1⁴

Table S4: Equations for error functions

Error function	Abbreviation	formula	References
Coefficient of determination	R ²	$\frac{\sum_{i=1}^{N} (Q_{e,cal} - Q_{mexp})^2}{\sum_{i=1}^{N} (Q_{e,cal} - Q_{mexp})^2 + (Q_{e,cal} - Q_{mexp})^2}$	3
Residual Root Mean Square Error	RMSE	$\sqrt{\frac{1}{n-2}\sum_{i=1}^{N}(Q_{e,\exp}-Q_{e,cal})^2}$	5
Chi-square test	χ ²	$\sum_{i=1}^{N} \frac{(Q_{e,\exp} - Q_{e,cal})^2}{Q_{e,cal}}$	5
Hybrid Fractional Error Function	HYBRID	$\frac{100}{N-p} \sum_{i=1}^{N} \left[\frac{\left(Q_{e,i,\exp} - Q_{e,i,cal} \right)^2}{Q_{e,i,\exp}} \right]$	3
Average Relative Error	ARE	$\frac{100}{N} \sum_{i=1}^{N} \left \frac{\mathcal{Q}_{e,i,cal} - \mathcal{Q}_{e,i,exp}}{\mathcal{Q}_{e,i,exp}} \right $	3

Where N is the number of experimental data points, Qe_{cal} (mg/g) is the theoretically calculated adsorption capacity at equilibrium, Qe_{exp} (mg/g) is the experimental adsorption capacity at equilibrium, p denotes the number of parameter

 $\Delta Egap = E_{LUMO} - E_{HOMO}$

 Table S5: Summary of N₂ adsorption-desorption analyses of NH₂-UiO-66

 Samples
 BET Total pore
 External Micropore

Samples	BET surface (m ² .g ⁻¹)	Total pore volume (cm ³ .g ⁻¹)	External surface area (m ² .g ⁻¹)	Micropore area (m ² .g ⁻¹)	Micropore volume (cm ³ .g ⁻¹)
NH ₂ -UiO-66	1156.62	0.66884	305.58	851.03	0.440253

Table S6: Central composite design for the adsorption (residual) of Indigo carmine, Rhodamin B and Orange 2.

					Y1: Adsorption of Indigo carmine (mg/g)	Y2: Adsorption of Rhodamin B (mg/g)	Y3: Adsorption of Orange II (mg/g)
N°	Time (min)	Concentrati on (mg/L)	pН	Masse (mg)	Residual	Residual	Residual
1.	-1	-1	-1	-1	1.94	0.83	11.7
2.	+1	-1	-1	-1	-1.1	0.84	-2.05
3.	-1	+1	-1	-1	1.33	3.07	-10.9
4.	+1	+1	-1	-1	0.43	-6.24	3.96
5.	-1	-1	+1	-1	-7.66	-1.79	1.21
6.	+1	-1	+1	-1	6.32	1.17	-11.36
7.	-1	+1	+1	-1	-2.1	0.77	9.94
8.	+1	+1	+1	-1	9.51	-0.35	16
9.	-1	-1	-1	+1	-11.68	-2.32	-15.353
10.	+1	-1	-1	+1	3.2	1.61	-6.67
11.	-1	+1	-1	+1	-5.22	1.21	14.62
12.	+1	+1	-1	+1	5.49	-0.88	-0.56
13.	-1	-1	+1	+1	0.67	8.62	-0.69
14.	+1	-1	+1	+1	-3.5	-5.74	11.55
15.	-1	+1	+1	+1	-1.07	-3.51	2.71
16.	+1	+1	+1	+1	-0.83	1.55	-8.44
17.	-1	0	0	0	23.79	-6.88	-13.24
18.	+1	0	0	0	-19.52	8.04	-2.43
19.	0	-1	0	0	11.81	-3.22	11.67
20.	0	+1	0	0	-7.55	4.38	-27.34
21.	0	0	-1	0	5.6	1.87	5.25
22.	0	0	+1	0	-1.33	-0.71	-20.92
23.	0	0	0	-1	-8.67	1.71	-18.5
24.	0	0	0	+1	12.94	-0.55	2.84
25.	0	0	0	0	11.93	-0.92	9.83
26.	0	0	0	0	-28.25	-0.97	8.42
27.	0	0	0	0	-8.29	-0.94	9.36
28.	0	0	0	0	11.8	-0.64	19.4

Residual = Predicted value - Observed values

Table S7: Optimal conditions for the adsorption and predicted and experimental values.

Conditions	Adsorp	Adsorption (mg/g)		
Concentration pH	Mass	Predicted	Experimental	Error

Responses	Time (min)	(g/mL)	(%)	(mg)	value	value	percentage
Indigo Carmine	60	100	10	22	265.48	264.81	0.67
Rhodamin B	120	90	5.28	26	95.98	91.62	4.35
Orange 2	88.90	100	7.16	23	230.67	229.89	0.78

Table S8: Parameters of the isotherm models for adsorption of dyes

Dyes	Isotherm	Parameters	REQM	HYBRID	SEA	ERM	R ²	γ
IC	Langmuir	$\begin{split} K_L &= 0.04071 \\ q_{mL} &= 433640.982 \\ R_L &= 0.19719 \end{split}$	17.732	17.732	5.069	0.108	0.510	1.350
	Freundlich	$K_{\rm F}$ = 6.627 $n_{\rm F}$ =0.708	17.689	33.597	1.377	0.036	0.766	1.343
	Toth	$q_{mT} = 17.229$ $a_T = 147.494$ $n_T = 0.0001$	4.990	10.493	2.970	0.178	0.982	0.629
02	Langmuir	$\begin{split} K_L &= 0.092 \\ q_{mL} &= 558.919 \\ R_L &= 0.09803 \end{split}$	16.901	31.941	37.419	0.836	0.977	1.217
	Freundlich	$K_{\rm F}$ = 6.919 $n_{\rm F}$ =0.092	16.901	31.941	37.419	0.836	0.826	1.077
	Toth	q_{mT} = 135.688 a_T = 0.106 n_T = 2.880	3.472	5.392	-4.916	-0.314	0.991	0.323
RhB	Langmuir	$\begin{array}{c} K_L = 0.00425 \\ q_{mL} = 1417330.000 \\ R_L = 0.723327 \end{array}$	7.093	35.733	7.921	1.125	0.894	1.429
	Freundlich	$K_F = 0.055$ $n_F = 0.761$	6.437	29.435	2.273	0.403	0.722	1.177
	Toth	$q_{mT} = 33.437$ $a_T = 93.204$ $n_T = 0.0001$	0.259	0.971	0.299	0.614	0.852	0.058

Table S9: Parameters of the kinetic models for adsorption of dyes

Dyes	Kinetic	Parameters	REQM	HYBRID	SEA	ERM	R ²	χ^2
IC	Pseudo-first	Qe = 93.795	11.1194	18.6205	-67.7395	-1.0202	0.9827	1.4896
	order	K = 0.0602						
	Pseudo-second	Qe =106.4678	4.1589	1.7366	3.5674	0.0358	0.9976	0.1607
	order	K=7.48E-04						
	Elovich	α=22.0978	4.2617	2.1882	-9.3670	-0.1026	0.9975	0.1969
		B=0.0493						
	Intraparticular	Kp=7.5716	10.4022	12 0266	-0.0003	-3.02E-	0.0824	1.4340
	diffusion	C=21.8299		15.0500		06	0.9824	
02	Pseudo-first	Qe=91.8919	2.8136	1.0742	-2.0685	-0.0281	0.9990	0.0859
	order	K = 0.1338						
	Pseudo-second	Qe =98.4952	2.0103	0.3656	-0.1717	-0.0016	0.9995	0.0439
	order	K=0.0023						
	Elovich	α=393.1846	5.8570	3.7242	-0.1201	-0.0012	0.9961	0.3352
		B=0.0848						
	Intraparticular	Kp=5.9323	16.7199	30.3495	-5.533E-	-5.46E-	0.9594	3.3384

	diffusion	C=39.6709			05	07		
RhB	Pseudo-first order	Qe=15.6020 K=0.1189	1.5755	2.0085	-0.8326	-0.067	0.9896	0.1607
	Pseudo-second order	Qe =17.1640 K=0.0099	0.9912	0.5299	0.2474	0.0133	0.9959	0.0636
	Elovich	α=17.8994 B=0.3958	0.6118	0.2423	-0.1857	-0.0109	0.9985	0.0218
	Intraparticle diffusion	Kp=1.1682 C=5.5708	2.1926	3.1120	4.98E-06	2.93E- 07	0.9761	0.3423

Table S10: Thermodynamiques parameters

Dyes	$\Delta H^{\circ}(kJ/mol)$	$\Delta S^{\circ}(J/mol.K)$	ΔG° (kJ/mol)		
			298 K	308 K	318 K
IC	-81.18	-243.22	-8.70	-6.27	-3.83
RhB	-17.05	-70.08	3.82	4.53	5.23
O2	-64.60	-196.05	-6.19	-4.23	-2.27

Table S11: Comparison of adsorption capacities of different dyes

Adsorbent	Adsorbate	Capacity/(mg/g)	Ref
g-Fe2O3/NiS	Alizarin R S	91	7
activated carbon doped with Mn oxide (Bio-MnO _x -C)	Indigo carmine	45.95	7
NH ₂ -UiO-66	Methylene Blue	97.97	8
	Rhodamine B	82.69	
	Safranin dye	390	9
UiO-66	Methylene Blue	90.59	8
	Rhodamine B	77.47	
	Methylene Blue	83.9	7
	Methyl Orange	175.4	
	Rhodamine	75.85	10
	Indigo carmine	75.89	11
UiO-66-0.5ATA	Indigo carmine	69.55	11
UiO-66-0.75ATA	Indigo carmine	84.26	11
UiO-66-ATA	Indigo carmine	66.67	11
NH ₂ -UiO-66	Indigo carmine	265.8	Present study
NH ₂ -UiO-66	Orange 2	229.8	Present study
NH ₂ -UiO-66	Rhodamine B	91.6	Present study

Standardized Pareto Chart for Quantity adsorbed

Fig. S1. Pareto diagrams of the effects of factors A, B, C and D for organic dyes IC (a), RhB (b) and O2 (c) adsorption

Fig. S2. Normal probability plot for the quantity of IC (a), RhB (b) and O2 (c) adsorbed

Fig. S3. Response surface plots of the central composite design showing the effect of time (min), pH and mass (mg) on the adsorption of the indigo carmine (mg/g)

Fig. S4. Response surface plots of the central composite design showing the effect of time (min), concentration (mg/L) and mass (mg) on the adsorption of the rhodamin B (mg/g)

Fig. S5. Response surface plots of the central composite design showing the effect of time (min), pH and mass (mg) on the adsorption of the orange 2 (mg/g).

Fig. S6. Impact of concentration on the adsorption of indigo carmine (a), rhodamine B (b) and orange 2 (c) using NH_2 -UiO-66

Isotherm

Fig. S7. SEM images of NH_2 -UiO-66 after indigo carmine (IC) (a), rhodamine B (RhB) (b) and orange 2 (O2) (c) adsorption

Fig. S8. Experimental and theoretical XRD pattern of NH₂-UiO-66

Molecular dynamic simulation

Total, adsorption and interaction energies were evaluated as follows ¹²:

$$E_{Interaction} = E_{Tot} - (E_{Surface} + E_{Polluant})$$
Eq.S3

Among them, E_{Tot} represents the total adsorption energy of the studied species on the NH₂-UiO-66 surface, and E_{surface} and E_{pollutant} are respectively the total energy of clean NH₂-UiO-66 plate and isolated molecules. The binding energy is the absolute value of the interaction energy.

$$E_{Liaison} = -E_{linteraction}$$

Energies (eV) IC O2 RhB -0.197 -0.217 - 0.177 E_{HOMO} ELUMO -0.154 -0.134 -0.122 ΔEgap 0.043 0.086 0.055 2.097 ΔN 4.119 2.707

Table S12: Energies E_{HOMO} , E_{LUMO} and Egap of IC, RhB and O2 studied

a) IC + 200 H ₂ O	b) Or2 + 200 H ₂ 0 + 5 (H ₃ O ⁺ , Cl ⁻)
c) RH + 200 H ₂ 0	

Fig. S9. Front views of the most stable low-energy configuration for adsorption of IC, O2 and RhB molecules on the NH2-UiO-66 surface at 298 K.

Reference

- Mokue Mafo, S. G. *et al.* Low-cost magnetic carbons-based rubber seed husks materials for highly efficient removal for reactive black 5 and reactive blue 19 textile dyes from wastewater. *Int. J. Environ. Anal. Chem.* 1–25 (2023) doi:10.1080/03067319.2023.2269857.
- 2. Atemkeng, C. D. *et al.* Optimization of 4-nonylphenol adsorption on activated carbons derived from safou seeds using response surface methodology. *Carbon Trends* **4**, 100052 (2021).
- 3. Nguena, K. L. T. *et al.* Mathematical modeling approach for the green synthesis of high-performance nanoporous zeolites Na-X optimized for water vapor sorption. *Mater. Today Commun.* **37**, 107406 (2023).

Eq.S4

- 4. Kamgang Djioko, F. H. *et al.* Efficient removal of pharmaceutical contaminant in wastewater using low-cost zeolite 4A derived from kaolin: Experimental and theoretical studies. *Mater. Chem. Phys.* **315**, 128994 (2024).
- Zemfack Mekuiko, A. *et al.* Tailoring activated carbons based cocoa pods lignocellulosic materials for Reactive blue 19 adsorption: optimization, adsorption isotherm and kinetic investigation. *DESALINATION WATER Treat.* 300, 144–157 (2023).
- 6. Tiomo, L. K. N., Madu, C. A., Ezema, F. I., Ngoune, J. & Oguzie, E. E. Molecular modelling of energy storage performance on metal organic frameworks/ethane nanoparticles nanofluids mixtures and derivatives. *Mater. Today Commun.* **38**, 107756 (2024).
- Embaby, M. S., Elwany, S. D., Setyaningsih, W. & Saber, M. R. The adsorptive properties of UiO-66 towards organic dyes: A record adsorption capacity for the anionic dye Alizarin Red S. *Chin. J. Chem. Eng.* 26, 731– 739 (2018).
- 8. Chen, Q. et al. Selective adsorption of cationic dyes by UiO-66-NH2. Appl. Surf. Sci. 327, 77-85 (2015).
- 9. Tambat, S. N. *et al.* Hydrothermal synthesis of NH2-UiO-66 and its application for adsorptive removal of dye. *Adv. Powder Technol.* **29**, 2626–2632 (2018).
- 10. He, Q., Chen, Q., Lü, M. & Liu, X. Adsorption Behavior of Rhodamine B on UiO-66. *Chin. J. Chem. Eng.* **22**, 1285–1290 (2014).
- Nanthamathee, C., Chantarangkul, C., Jakkrawhad, C., Payaka, A. & Dechatiwongse, P. Fine-Tuning Dye Adsorption Capacity of UiO-66 by Mixed-Ligand Approach. Preprint at https://doi.org/10.21203/rs.3.rs-490186/v1 (2021).
- 12. Njoku, D. I., Li, Y., Lgaz, H. & Oguzie, E. E. PT NU SC. J. Mol. Liq. (2017) doi:10.1016/j.molliq.2017.11.051.