Electronic Supplementary Information

Rutile-Type Metal Dioxide (110) Surfaces for the Cyclic Oxidation of Methane to Methanol

Farrel Dzaudan Naufal,^a Hasna Afifah,^b Marleni Wirmas,^b Mohammad Kemal Agusta,^{a,c} Adhitya Gandaryus Saputro,^{a,c} Hadi Teguh Yudistira,^d Aleksandar Staykov,^e Kazunari Yoshizawa,^f and Muhammad Haris Mahyuddin,^{*,a,c}

^{*a*} Quantum and Nano Technology Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

^b Doctoral Program of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

^c Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

^{*d*} Mechanical Engineering Study Program, Institut Teknologi Sumatera, Way Hui, South Lampung 35365, Indonesia

^e International Institute for Carbon-Neutral Energy Research, Kyushu University, Fukuoka 819-0395, Japan

^f Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan

* To whom all correspondences should be addressed

(e-mail: mahyuddin133[at]itb.ac.id).

Table of Contents:

Figure S1	Surface formation energy of clean $IrO_2(110)$, β -PtO ₂ (110), and β -MnO ₂ (110) surfaces calculated using different cut-off energy values.
Figure S2	Relative energies of the CH ₄ , Mn···•CH ₃ +H or Pt–CH ₃ +H, and CH ₃ OH adsorption on the (a) β -MnO ₂ (110) and (b) β -PtO ₂ (110) surfaces calculated using different U _{eff} values.
Figure S3	Energy diagrams (in eV) of H_2O_2 decomposition on the stoichiometric β -MnO ₂ (110) surface via the O–O and O–H bond scission pathways.
Figure S4	Geometrical structures of each reaction step of the methane to methanol conversion on the stoichiometric $IrO_2(110)$, β -PtO ₂ (110), and β -MnO ₂ (110) surfaces.
Figure S5	-pCOHP plots for M–O bond of the CH_3OH adsorbed on (a) $IrO_2(110)$, (b) β -PtO ₂ (110), and (c) β -MnO ₂ (110) surfaces. Positive and negative –pCOHP values indicate bonding and antibonding interactions, respectively.
Figure S6	Geometrical parameters of the formed methanol adsorbed on the stoichiometric (a, d) $IrO_2(110)$, (b, e) β -PtO ₂ (110), and (c, f) β -MnO ₂ (110) surfaces, and (g) that in the gas phase.
Figure S7	Plots of E_a vs. ΔE for the (a) C–H activation and (b) HO–CH ₃ formation steps.
Figure S8	Plots of E_a of (a) C–H activation and (b) HO–CH ₃ formation steps against the O p-band center of the clean IrO ₂ (110), β -PtO ₂ (110), and β -MnO ₂ (110) surfaces.
Figure S9	Comparison of reaction energies for the CH_3OH^* , CH_2O^* , and $C_2H_6O^*$ formation, showing a higher stability of CH_3OH formation as compared to the formation of the other two side products as a result of overoxidation.
Figure S10	Total DOS of CH_4 and $\bullet CH_3$ in the gas phase (isolated in big vacuum).
Figure S11	Energy diagrams (in eV) of H_2O_2 decomposition on the reduced β -MnO ₂ (110) surface via the O–O and O–H bond scission pathways.
Figure S12	Energy diagrams (in eV) of H–CH ₃ bond scission on the reduced β -MnO ₂ (110) surface via a mechanism that leads to the Mn–CH ₃ formation.
Figure S13	Energy diagram (in eV) of O_2 dissociation on the reduced β -MnO ₂ (110), forming back the fresh stoichiometric β -MnO ₂ (110) surface.

Figure S1. Surface formation energy of clean $IrO_2(110)$, β -PtO₂(110), and β -MnO₂(110) surfaces calculated using different cut-off energy values.

Figure S2. Relative energies of the CH₄, Mn···•CH₃+H or Pt–CH₃+H, and CH₃OH adsorption on the (a) β -MnO₂(110) and (b) β -PtO₂(110) surfaces calculated using different U_{eff} values.

The use of U_{eff} = 5.1 and 7,5 eV for Mn 3d and Pt 5d orbitals, respectively, is chosen according to two thorough investigations reported by Tompsett et al. (*J. Am. Chem. Soc.* 2014, 136, 4, 1418–1426) and Tsuji et al. (*ACS Omega* 2021, 6, 21, 13858–13869). In these reports, the authors carefully tested various U_{eff} values and found optimized values that can correctly treat the strong correlation effects of Mn⁴⁺, Mn³⁺, Pt⁴⁺, and Pt³⁺ involved in the present study. Figures above also show that the use of different U values insignificantly alters the relative adsorption energies.

Figure S3. Energy diagrams (in eV) of H_2O_2 decomposition on the stoichiometric β -MnO₂(110) surface via the O–O and O–H bond scission pathways.

Figure S4. Geometrical structures of each reaction step of the methane to methanol conversion on the stoichiometric $IrO_2(110)$, β -PtO₂(110), and β -MnO₂(110) surfaces.

Figure S5. –pCOHP plots for M–O bond of the CH₃OH adsorbed on (a) $IrO_2(110)$, (b) β -PtO₂(110), and (c) β -MnO₂(110) surfaces. Positive and negative –pCOHP values indicate bonding and antibonding interactions, respectively.

Figure S6. Geometrical parameters of the formed methanol adsorbed on the stoichiometric (a, d) $IrO_2(110)$, (b, e) β -PtO₂(110), and (c, f) β -MnO₂(110) surfaces, and (g) that in the gas phase.

Figure S7. Plots of E_a vs. ΔE for the (a) C–H activation and (b) HO–CH₃ formation steps.

In plot (a), since the C–H activation mechanism on the β -MnO₂(110) (homolytic mechanism) is different from that on the IrO₂(110) and β -PtO₂(110) (heterolytic mechanism), we cannot include the E_a and ΔE of the β -MnO₂(110) to the plot. Thus, the BEP relation in this case (with only two points of data) seems unreliable.

Figure S8. Plots of E_a of (a) C–H activation and (b) HO–CH₃ formation steps against the O p-band center of the clean IrO₂(110), β -PtO₂(110), and β -MnO₂(110) surfaces.

In plot (a), since the C–H activation mechanism on the β -MnO₂(110) (homolytic mechanism) is different from that on the IrO₂(110) and β -PtO₂(110) (heterolytic mechanism), we cannot include the E_a (C–H) and O p-band center of the β -MnO₂(110) to the plot. Thus, the relation in this case (with only two points of data) seems unreliable. In plot (b), the coefficient of determination (R²), is found to be low, suggesting a low dependency of the HO–CH₃ formation on O p-band center.

Figure S9. Comparison of reaction energies for the CH_3OH^* , CH_2O^* , and $C_2H_6O^*$ formation, showing a higher stability of CH_3OH formation as compared to the formation of the other two side products as a result of overoxidation.

Figure S10. Total DOS of CH₄ and •CH₃ in the gas phase (isolated in big vacuum).

Figure S11. Energy diagrams (in eV) of H_2O_2 decomposition on the reduced β -MnO₂(110) surface via the O–O and O–H bond scission pathways.

Figure S12. Energy diagrams (in eV) of H–CH₃ bond scission on the reduced β -MnO₂(110) surface via a mechanism that leads to the Mn–CH₃ formation.

Figure S13. Energy diagram (in eV) of O_2 dissociation on the reduced β -MnO₂(110), forming back the fresh stoichiometric β -MnO₂(110) surface.