Supporting Information

Deciphering the electrochemical kinetics of sulfur vacancy assisted nitrogen doped $NiCo_2S_4$ combined with sulfur doped $g-C_3N_4$ towards supercapacitor applications

Soumyashree Pany^a, Amtul Nashim^{a#}, Ritik Mohanty^{a#}, Kulamani Parida^a

^aCentre for Nano Science and Nano Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India,

Equal Contribution

*Kulamani Parida, SOA University, Bhubaneswar-751019,

E-mail: paridakulamani@yahoo.com, kulamaniparida@soa.ac.in

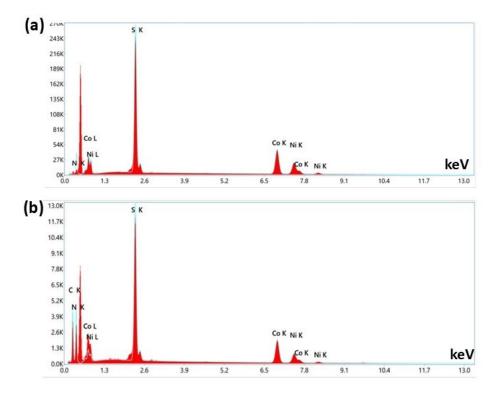


Fig.S1: Elemental composition (a) S'N-NCS and (b) S'N-NCS -S-g-CN.

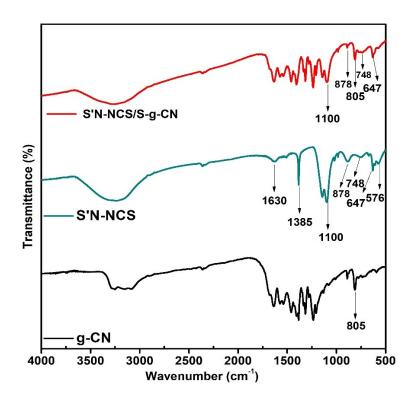


Figure S2. represents FTIR spectra of g-CN, S'N-NCS and S'N-NCS/S-g-CN.

Figure S3 represents FTIR spectra of g-CN, S'N-NCS and S'N-NCS/S-g-CN nanocomposite. The formation of g-C₃N₄ is clearly observed through FTIR spectra and the peak located at 805 cm⁻¹ could be due to the characteristics breathing mode of tri-s-triazine units. The peak appeared at around 1200-1650 can be typically assigned for breathing mode of CN heterocycles. [1] The broad band in the range 3000-3400 cm⁻¹ can be ascribed to the stretching vibration of uncondensed amine group and surface adsorbed water molecule. For, S'N-NCS, the band appeared at 576, 647, 748 and 878 cm⁻¹ are assigned for symmetrical stretching vibration of Co-S or Ni-S vibration of NiCo₂S₄. Moreover, an intense doublet peak at 1100 cm⁻¹ is due to bending vibration of sulfide groups present in S'N-NCS. [2] The peak appeared at 1385 and 1630 cm⁻¹ might be due to the presence of residual interlayer nitrite anions and bending vibrations of adsorbed water molecules.[3] In S'N-NCS/S-g-CN nanocomposite characteristics peaks observed for g-C₃N₄ and for S'N-NCS (NiCO₂S₄) confirming formation of S'N-NCS/S-g-CN nanocomposite.

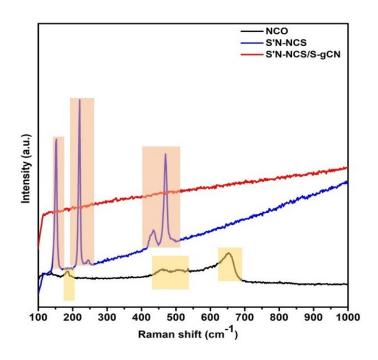


Figure S3. represents Raman spectra of NCO, S'N-NCS and S'N-NCS/S-g-CN.

To understand the crystal structure of the as prepared materials Raman spectroscopy has been carried out. Fig, S4 represent the Raman spectra of NCO, S'N-NCS and S'N-NCS/S-g-CN. For NCO, it shows peaks at 183, 463, 517, and 655 cm⁻¹, which are due to F2g, Eg, F2g and A1g mode of NiCo₂O₄. From the spectrum of NCO, the only band observed for Ni-O and Co-O, absence of other band confirming purity of NiCo₂O₄ (i.e NCO). [4] Spectrum for S'N-NCS (NiCo₂S₄) typically provide several prominent peaks. The peak appeared at around 150 cm⁻¹ can be ascribed due to the asymmetric bending of (S-Ni_{tetra}-S) bonds. The bending of (S-Ni_{tetra}-S) causes Eg (218 and 240 cm⁻¹) mode which may arise due to torsional mode of M-S bond and sulfur ring vibration. The peak around 434 and 460 Cm⁻¹ (Eg) might be due to breathing mode involving in-plane and out-plane vibration of sulfur atoms. The observed band confirmed formation of NiCo₂S₄. [5,6] In case of S'N-NCS/S-g-CN, a plateau like spectrum noticed and it might be because of presence of g-CN which has weak efficiency towards Raman scattering. As S'N-NCS/S-g-CN possesses a remarkable amount of g-CN, it might be one of the possible causes to get plateau like spectrum.

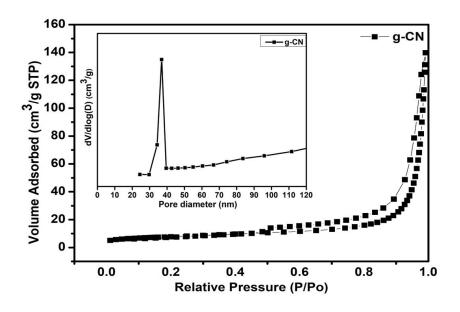


Figure S4: N₂ adsorption desorption isotherm of g-CN.

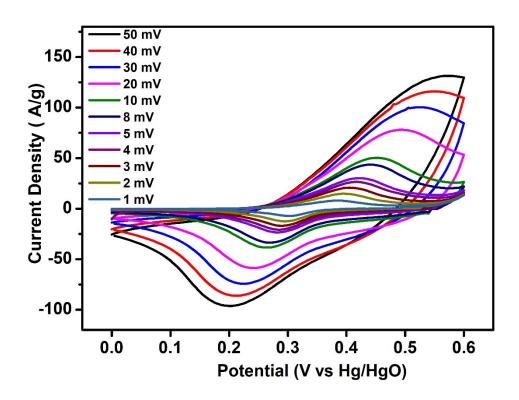


Figure S5 represents CV profile of S'N-NCS.

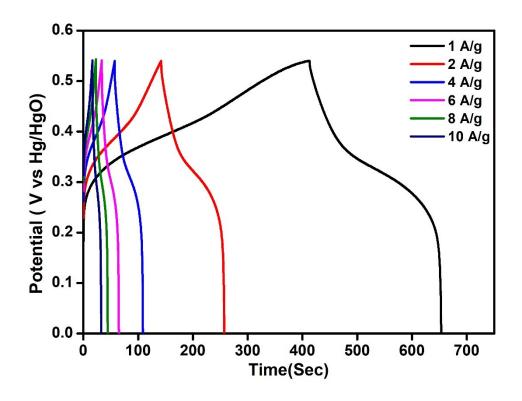


Figure S6 represents GCD profile of S'N-NCS.

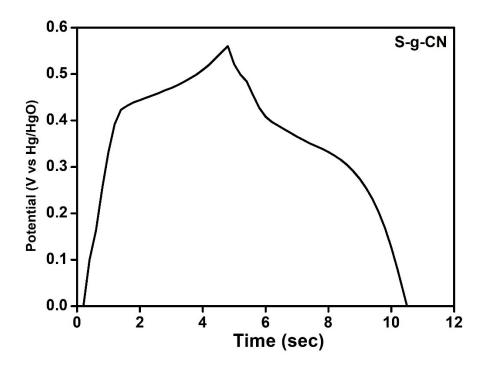


Figure S7 represents GCD profile of S-g-CN.

Table S1 represents the specific capacity of S'N-NCS, S-g-CN and S'N-NCS/S-g-CN at different current density.

Current Density (A/g)		1	2	4	6	8	10
Specific Capacity (C/g)	S'N-NCS	242	208	202	189	179	158
	S-g-CN	9	-	-	1	-	-
	S'N-NCS/S-g- CN	1034	972	904	827	766	732

Theoretical specific capacitance Calculation:

Theoretical capacitance has been calculated by using the following equation

$$C_t = \frac{n \times f}{\Delta V \times m}$$

Where

n = number of moles of electrons transmitted per mole of active material (n=4)

f= faraday constant (96485 C/mol)

m= molar mass of active material (g/mol) [NiCo₂S₄=304.793 g/Mol]

 ΔV = potential (0.5)

$$C_t = \frac{4 \times 96485}{0.5 \times 304.8} = \frac{2532.4 \text{ F/g}}{2532.4 \text{ F/g}}$$

Table S2 Represents the comparison among the various NiCo₂S₄ based electrode materials with our work.

Materials	Specific Capacitance (C/g or F/g)	Electrolyte	Ref.
NiCo ₂ S ₄ @NiMoO ₄	1035 F g ⁻¹ at 1 A g ⁻¹	3 М КОН	7
		aqueous	

		electrolyte.	
Hollow C-NiCo ₂ S ₄	1722 F g ⁻¹ / 688.8 C g ⁻¹ at 1 A g ⁻¹	6 M KOH solution	8
Mesoporous NiCo ₂ O ₄ and NiCo ₂ S ₄	1296 F g ⁻¹ at a current density of 1 A g ⁻¹	1 M KOH	9
Glycine-assisted hydrothermal synthesis of NiCo2S4	675 F g ⁻¹ at 1 A g ⁻¹	6М КОН	10
NiCo ₂ S ₄ /S-doped g-C ₃ N ₄	351.0 F g ⁻¹ at 1 A g ⁻¹	2М КОН	11
NiCo ₂ S ₄ nanosheets on porous g-C ₃ N ₄ nanosheets	506 C g ⁻¹ at 1 A g ⁻¹	2М КОН	12
Sulfur vacancy mediated N-NiCo ₂ S ₄ /S-g-C ₃ N ₄	1034 C g ⁻¹ at 1A g ⁻¹ in	2М КОН	Our work

Reference

- (1) S. Pany and K. M. Parida, Phys. Chem. Chem. Phys., 2015, 17, 8070-8077.
- (2) Malaya K. Sahoo and G. Ranga Rao, Electrochimica Acta, 2018, 268, 139-149.
- (3) S. Pany, K. M. Parida, and B. Naik, RSC Adv. 2013, **3**, 4976-4984.
- (4) M. Silambarasan, P. S. Ramesh and D. Geetha, *J Mater Sci: Mater Electron*, 2017, **28**, 323-336.
- (5) A. Premkumar, B. Sridevi and K. S. Mohan, J. Appl. Electrochem., DOI: 10.1007/s10800-024-02170-4.
- (6) C. Xia, P. Li, A. N. Gandi, U. Schwingenschlogl and H. N. Alshareef, Chem. Mater. 2015, 27, 6482-6485.
- (7) J.Wang, Y.Li, Y. Zhao, D. Zhang, S. Song and J. Ke, Crystals. 2022; 12, 821.
- (8) S.G. Mohamed, I. Hussain and J.J. Shim, Nanoscale, 2018, 10, 6620-6628.
- (9) Y. Liu, Z. Wang, Y. Zhong, M. Tade, W. Zhou, Z. Shao, *Adv. Funct. Mater.* 2017, **27**, 1701229.
- (10) M.S. Kumar, N. Bhagavath, S.K. Batabyal, N.K. Kothurkar, *JS: AMD*. 2019, 4, 376-380.

- (11) J.S Ma, H. Yang, S. Kubendhirana , L.Y. Lin, *J. Alloys Compd.* 2022, **903**,163972.
- (12) Z. Li, L.Wu, L. Wanga, A. Gua, Q. Zhou, Electrochim Acta, 2017, 231,617-625.