Supplementary Information

2D Monolayer Molybdenum (IV) Telluride TMD: An Efficient Electrocatalyst for Hydrogen Evolution Reaction

Vikash Kumar¹ and Srimanta Pakhira^{1,2,*}

¹ Theoretical Condensed Matter Physics and Advanced Computational Materials Science Laboratory, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore-453552, MP, India.

² Theoretical Condensed Matter Physics and Advanced Computational Materials Science Laboratory, Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore-453552, MP, India.

*Corresponding author: spakhirafsu@gmail.com

S1 Validation of the cluster model:

Figure S1: Hydrogen adsorption energies on the 2D monolayer MoTe₂ TMD. $E_{cluster}$ represents the relative electronic energy during hydrogen adsorption considering the molecular cluster model system and $E_{periodic}$ is the relative electronic energy obtained from the periodic 2D layer calculations.

S2 Turnover Frequencies calculations:

Different types of technologies correspond to load quality and thus have many differences. Therefore, improved HER performance by turnover frequency (TOF) is an important parameter to evaluate to address such difficulties.¹ The TOF employs the number of catalytic cycles that actually happen per unit of time to determine the catalyst's activity under the reaction circumstances. The higher the TOF value, the better the performance of the electrocatalysts. We have used the following formula for the TOF theoretical calculation:

$$rate = \frac{(k_B T)}{h} \times exp\left(-\frac{\Delta G}{RT}\right)$$

Here k_B means Boltzmann constant (3.298x10⁻²⁷ kcal.mol⁻¹), T is the absolute temperature (298.15 K), h is plank's constant (1.584x10⁻³⁷ kcal S⁻¹), R is the universal ideal gas constant (1.987x10⁻³ kcal K⁻¹ mol⁻¹), and ΔG is the energy barrier of the intermediate steps of HER. Using transition state theory (TST)², including DFT calculations, we calculated the TOF for both reaction mechanisms (Volmer-Heyrovsky and Volmer-Tafel) for H₂ formation at the edge of the Mo atom.

Another parameter, the Tafel slope is also important for HER calculation to compare with experimental results.¹ The Tafel slope (m) demonstrates the effectiveness with which an electrode can generate current in response to a change in applied potential. In other words, if the Tafel slope (mV/decade) is lower, less overpotential is required to get a high current, assuming that the catalyst's reaction rate does not limit the electron transfer from the support to the catalyst. Tafel slope is a theoretical calculation based on the number of electron transfers during the HER steps. The following formula calculates the Tafel slope:

$$m = 2.303 \left(\frac{RT}{nF}\right)$$

Hare R= the universal gas constant, T = absolute temperature, F = Faraday constant (96485 C mol⁻¹), and n = the number of electrons in the HER mechanism.¹ This Tafel slope provides information regarding the rate-determining step, kinetics, and energy required to obtain the required activity of the catalyst. Earlier, we discussed two-electron transfer mechanisms in the

HER system as in Figure 3, so the value of n should be taken as 2 for the evolution of one H_2 molecule. So, the Tafel slope calculated for 2D single-layer MoTe₂ is found to be 29.58 mV dec⁻¹ at T=298.15 K.

Here we calculated the turnover frequency (TOF) for the solvent phase energy barrier of the Heyrovsky reaction barrier. We have calculated the turnover frequency (TOF) of the evolution of H₂ at the edge of each Mo atom in a 2D monolayer MoTe₂ catalyst. The turnover frequency is calculated according to the formula mentioned earlier. The TOF of the 2D monolayer MoTe2 obtained from the reaction barrier (ΔG) formed by H₂ in the Heyrovsky TS and Taferl TS in the solvent phase, is about $3.91 \times 10^3 \text{ sec}^{-1}$ and $8.22 \times 10^8 \text{ sec}^{-1}$, respectively. The higher the turnover frequency (TOF) value, the more efficient the development of H₂ during HER. The TOF values of other catalysts, such as 2D monolayer MoS₂, WS₂, W_{0.4}Mo_{0.6}S₂, and Mn-MoS₂, are mentioned in Table S1 for comparison with 2D monolayer MoTe₂ catalysts. The 2D MoTe₂ catalyst material shows a reasonably high TOF value, which helps the catalyst material to exhibit significantly superior and efficient performance during HER.

Table S1: The Heyrovsky reaction barrier (ΔG) and turnover frequency (TOF) of the 2D monolayer MoS₂, WS₂, W_{0.4}Mo_{0.6}S₂, Mn-MoS₂, and MoTe₂ TMD in the solvent phase are listed here.

Materials	Barrier in gas phase (ΔG) (in kcal.mol ⁻¹)	Barrier in solvent phase (ΔG) (in kcal.mol ⁻¹)	Turnover frequency (TOF) in solvent phase Sec ⁻¹	References
MoS ₂	16.0	23.8	2.1 × 10 ⁻⁵	3
WS ₂	14.5	21.3	1.5×10^{-3}	3
W _{0.4} Mo _{0.6} S ₂	11.5	13.3	1.1×10^{3}	3
Mn-MoS ₂	10.6	10.8	7.74×10^{4}	4
MoTe ₂	6.07	5.29	8.22×10^{8}	This work

S3 HOMO-LUMO Calculations

Our present calculations using 2D single-layer MoTe₂ reveal the low energy barriers of the Vollmer-Heyrovsky phases in HER, which are expected to be a good candidate as electrocatalysts in HER. To further support the development of our MoTe₂ molecular cluster model system, we apply natural bond orbital (NBO), HOMO, and LUMO calculations by the same DFT analysis. HOMO-LUMO energy is the most famous quantum mechanics parameter, and it plays an essential role in controlling a wide range of chemical interactions. NBO calculations can detect the structure with the largest electron charge in the Lewis orbital. This NBO study explains the wave function's density of interaction or overlaps. The wave function calculated from the NBO is a linear combination of the atomic orbitals of the Te, Mo, and H atoms of the Volmer energy barrier and the atomic orbitals of the Te, Mo, H, and O atoms of the Heyrovsky energy barrier. Understanding the Highest Occupied Molecular Orbitals (HOMO) and Lowest Unoccupied Molecular Orbitals (LUMO) computation for the Vollmer and Heyrovsky transition state has been performed using the same DFT method as shown in Figure S2, where the red color indicates the in-phase bonding and blue color represents the out-of-phase bonding of the orbital. These calculations of the Heyrovsky transition TS2 can better explain the Heyrovsky mechanism of effective HER from the perspective of the charge cloud and molecular orbital overlap during the formation of H₂.

(d)

Figure S2 The equilibrium structure of MoTe₂ (a) The HOMO of Volmer TS; (b) The LUMO of Volmer TS; (c) The HOMO of Heyrovsky TS; (d) The LUMO of Heyrovsky TS; (e) The HOMO of Tafel TS; (f) The LUMO of Tafel TS is shown here.

The energy difference between the HOMO and LUMO studies provides stability to the molecule. The potentials of the electron donor and acceptor units are explained by the HOMO energy and the LUMO energy, respectively. This study found that TS1 and TS2 in the case of 2D MoTe₂ are reduced by the overlap of s orbitals of H and d orbitals of Mo metal atoms, as shown in Figure S2(a-d). Figure S2(a-b) indicates the HOMO and LUMO of the Volmer transition state of 2D MoTe₂, respectively. The electron cloud between the H atom and Mo metal atom in the Volmer transition state structure highlighted by the red dotted circle is the 2D MoTe₂ TMD structure in the Volmer step of H* migration. The electron cloud between the H atom and Mo metal atom in the Volmer transition state structure highlighted by the red dotted circle is the 2D MoTe₂ TMD structure in the Volmer step of H* migration. The energy values of HOMO and LUMO of Volmer TS are found to be E_{HOMO} =-2.18 eV and E_{LUMO} =-2.10 eV, respectively. So, the energy difference between HOMO and LUMO of Volmer TS is found to be $E_{GAP} = E_{LUMO}$ - E_{HOMO} = 0.075 eV, so it means this is the energy required for an electron to transition from HOMO to LUMO. The electron cloud between two H atoms in the Heyrovsky transition state structure highlighted by the red dotted circle is the 2D MoTe₂ TMD structure in the presence of four water molecules in the Heyrovsky step of H₂ evolution, as shown in Figures S2 c and d. So, the Heyrovsky reaction is performed by overlapping the atomic orbitals of two H atoms with adjacent hydrated hydrogen (H₃O⁺) in the water cluster to form H₂ molecules during the HER process. Figure S2 c-d indicates the HOMO and LUMO of the Heyrovsky transition state of 2D MoTe₂, respectively. The energy difference between HOMO and LUMO, also known as the HOMO-LUMO gap, is used to predict the HER's stability of transition metal-based electrocatalysts. The energy values of HOMO and LUMO of Heyrovsky TS are found to be E_{HOMO}=-6.90 eV and E_{LUMO}=-6.74 eV, respectively. So, the energy difference between HOMO and LUMO of Heyrovsky TS is found to be $E_{GAP} = E_{LUMO} - E_{HOMO} = 0.16$ eV, so it means this is the energy required for an electron to transition from HOMO to LUMO. This is also another reason why the two-dimensional monolayer MoTe₂ shows excellent HER activity. To better visualize the Tafel reaction mechanism, a HOMO-LUMO calculation was also performed, shown in Figures S2(b) and S2(c). The electron cloud uses red and blue to represent the positive

and negative parts of the wave function. A red dotted circle highlights the electron cloud around hydrogen in the HOMO-LUMO. The phase or orbit is the direct result of the wave-like characteristics of electrons. Usually, in-phase mixing indicates a low energy state, and out-of-phase mixing indicates an anti-bonding orbital or higher energy state. The HOMO and LUMO of Heyrovsky TS energy values are E_{HOMO} =-4.80 eV and E_{LUMO} =-4.66 eV, respectively. So, the energy difference between HOMO and LUMO of Tafel TS is found to be E_{GAP} = E_{LUMO} - E_{HOMO} = 0.14 eV, so it means this is the energy required for an electron to transition from HOMO to LUMO. The gentle orbital overlaps of the molecular orbitals during the H migration in the H*-migration reaction step and the H₂ formation in the Heyrovsky and Tafel reaction steps reveal the excellent electrocatalytic activity of the 2D monolayer MoTe₂ TMD for HER.

S4- Optimized Structure of Symmetric 2D MoTe₂ TMD (.cif format)

_cell_length_a	3.403393
_cell_length_b	3.403393
_cell_length_c	20.000000
_cell_angle_alpha	90.000000
_cell_angle_beta	90.000000
_cell_angle_gamma	120.000000
_symmetry_space_group	_name_H-M 'P 1'
_symmetry_Int_Tables_n	umber 1

loop_

_symmetry_equiv_pos_as_xyz

'x, y, z'

loop_

_atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z MO001 MO -0.333333 0.333333 0.000000 TE002 TE 0.333333 -0.333333 -0.089661 TE003 TE 0.333333 -0.333333 0.089661

S5- Optimized Geometries of Non-periodic Relevant Structures in gas phase

The optimized geometries of various intermediates and the transition structure resulting in the proposed HER mechanism are listed below in .xyz file format.

• [MoTe2]

E=-845.885106 Hartree, G=-845.965044 Hartree, H=-845.794640 Hartree

Mo	-0.52821	-0.01321	0.08021
Te	-0.49452	-0.01846	2.69606
Mo	2.10842	-0.03243	1.53369
Te	2.60985	-0.91272	4.07291
Mo	5.02354	-0.02323	3.14735
Te	5.42300	-0.00361	5.96962
Mo	7.65677	0.01300	4.60772

Te	- 0.90158	0.46261	-2.48648
Te	0.94394	2.15927	0.21899
Te	1.18146	-1.98217	-0.17468
Мо	1.73582	0.29901	-1.64580
Te	3.90983	1.97224	1.70702
Te	4.18116	-1.81274	1.23863
Mo	4.97664	0.33120	-0.21331
Te	6.74365	2.17828	3.43122
Te	6.97353	-1.96271	3.02863
Mo	7.91302	0.32119	1.77237
Te	2.39195	0.54368	-4.37100
Te	3.78587	2.17765	-1.83420
Te	3.99147	-1.26543	-2.20251
Mo	5.12865	0.73100	-3.80749
Te	6.97170	2.18906	-0.06951
Te	7.19487	-1.25319	-0.42999
Mo	7.93921	0.74123	-2.25230
Te	10.02633	0.50053	3.55686
Te	5.45863	1.11890	-6.53044
Te	6.77285	2.89615	-3.47349
Te	7.02629	-1.24010	-3.90631
Mo	7.68386	1.02668	-5.11028
Te	9.87097	0.57485	-0.23428

Te 10.06905 1.13087 -3.98108

• [MoTe2]⁻¹

E= -846.015966 Hartree, G= -846.097228 Hartree, H= -845.925586 Hartree

Mo	0.01473	-0.01213	0.01045
Te	0.01456	0.01548	2.62884
Mo	2.62315	0.01167	1.47318
Te	3.12010	-0.91042	4.01327
Mo	5.53220	0.05053	3.13472
Te	5.84981	0.09137	5.98154
Mo	8.09169	0.09872	4.63086
Te	-0.38459	0.39151	-2.55448
Te	1.44954	2.19133	0.13513
Te	1.73995	-1.96777	-0.23398
Mo	2.28780	0.32334	-1.70360
Te	4.41473	2.02351	1.67020
Te	4.73198	-1.74405	1.21094
Mo	5.51887	0.39311	-0.23755
Te	7.24495	2.29110	3.44764
Te	7.50141	-1.91625	3.06272
Mo	8.38557	0.39683	1.79699

Te	2.93397	0.59665	-4.40421
Te	4.32750	2.22141	-1.87627
Te	4.56892	-1.21337	-2.23352
Mo	5.70500	0.78088	-3.83708
Te	7.49024	2.27718	-0.05777
Te	7.74063	-1.19366	-0.41198
Mo	8.47850	0.80774	-2.22070
Te	10.49698	0.44248	3.65130
Te	6.03640	1.13889	-6.55233
Te	7.34189	2.96289	-3.46338
Te	7.63005	-1.18285	-3.89313
Mo	8.26250	1.09327	-5.09816
Te	10.37965	0.69214	-0.13876
Te	10.63155	1.14919	-3.90980

• [MoTe2]H_{Te}

E= -846.457231 Hartree, G= -846.532156 Hartree, H= -846.359593 Hartree

Mo	0.00338	0.06559	0.01866
Te	0.06305	0.29105	2.64107
Mo	2.58770	0.04943	1.40416
Te	3.12392	-1.21479	3.90235

Mo	5.56555	0.05298	3.11057
Те	5.71313	0.38390	5.89833
Mo	8.02276	0.10667	4.63720
Te	-0.39043	0.46144	-2.55108
Те	1.46884	2.25476	0.05494
Те	1.68677	-1.93083	-0.29988
Mo	2.27571	0.35740	-1.72620
Те	4.38350	2.02913	1.70694
Te	4.72235	-1.74938	1.15637
Mo	5.51613	0.38834	-0.22721
Те	7.28383	2.29512	3.37268
Те	7.51434	-1.93598	3.04776
Mo	8.36960	0.36534	1.78741
Те	2.91741	0.65249	-4.40773
Те	4.34873	2.22924	-1.87401
Те	4.55497	-1.18072	-2.26220
Mo	5.70888	0.80448	-3.85025
Те	7.49536	2.26070	-0.06974
Те	7.73139	-1.20562	-0.44301
Mo	8.47088	0.79722	-2.23345

Te	10.44149	0.43115	3.63197
Te	6.01768	1.18972	-6.54108
Te	7.36130	2.97109	-3.46976
Te	7.61134	-1.17687	-3.91891
Mo	8.26712	1.09972	-5.10906
Te	10.36957	0.63928	-0.16001
Te	10.62641	1.13406	-3.90915
Н	2.46268	-0.14005	4.99512

• [MoTe2]H_{Te}⁻¹

E= -846.577657 Hartree, G= -846.651782 Hartree, H= -846.480228 Hartree

Mo	0.01845	-0.00155	0.04124
Te	0.02158	0.07292	2.67785
Mo	2.55201	0.01832	1.40401
Te	3.13419	-1.45541	3.79544
Mo	5.50836	0.03230	3.17880
Te	5.56923	0.10722	6.01023
Mo	7.89959	0.03650	4.77549
Te	-0.34770	0.52551	-2.51715
Te	1.32237	2.29013	0.23112
Te	1.76302	-1.90701	-0.47017

Mo	2.29403	0.55394	-1.62464
Te	4.23044	2.06280	1.94076
Te	4.78009	-1.64447	1.05584
Mo	5.46946	0.64009	-0.10851
Te	7.10574	2.31762	3.70037
Te	7.54690	-1.88116	3.00504
Mo	8.29788	0.57977	1.98056
Te	2.96705	1.12319	-4.28120
Te	4.23733	2.56486	-1.60529
Te	4.64857	-0.81328	-2.28529
Mo	5.70506	1.37131	-3.64196
Te	7.35668	2.57926	0.26610
Te	7.78428	-0.80131	-0.40253
Mo	8.47031	1.38162	-1.98168
Te	10.32669	0.57529	3.89301
Te	6.10453	1.95194	-6.30591
Te	7.22348	3.58200	-3.05292
Te	7.71828	-0.47553	-3.85050
Mo	8.29288	1.92508	-4.82223
Te	10.32269	1.15290	0.13502

- Te 10.63067 1.96816 -3.58818
- Н 2.40874 -0.53530 4.98848
 - H*-Migration Transition state from $[MoTe2]H_{Te}^{-1}$ to $[MoTe2]H_{Mo}^{-1}$

E= -846.562517 Hartree, G= -846.638289 Hartree, H= -846.467192 Hartree

Mo	-0.00366	0.00637	-0.09740
Te	-0.14420	-0.26392	2.49340
Mo	2.54554	0.00108	1.43121
Te	3.13551	-1.37808	3.85202
Mo	5.49955	0.02313	3.09397
Te	5.55798	0.03742	5.95460
Mo	7.88690	-0.01605	4.72080
Te	-0.33744	0.63888	-2.61095
Te	1.27422	2.27829	0.32077
Te	1.78846	-1.85521	-0.53375
Mo	2.29691	0.65284	-1.63661
Te	4.19978	2.08416	1.94958
Te	4.76099	-1.61800	0.98110
Mo	5.46225	0.70434	-0.11844
Te	7.09279	2.28641	3.69180
Te	7.52721	-1.91138	2.92880

Mo	8.27890	0.57158	1.94146
Te	2.96014	1.29488	-4.27553
Te	4.22027	2.67263	-1.55837
Te	4.64570	-0.69260	-2.33538
Mo	5.68824	1.53700	-3.63650
Te	7.35286	2.62749	0.29178
Te	7.76232	-0.75031	-0.47112
Mo	8.44807	1.48046	-1.99078
Te	10.31477	0.52605	3.85433
Te	6.07385	2.19664	-6.28450
Te	7.21160	3.72360	-2.98522
Te	7.69317	-0.31124	-3.91861
Mo	8.26891	2.12064	-4.81071
Te	10.30419	1.17111	0.10964
Te	10.60793	2.12015	-3.57867
Η	2.29688	0.13540	3.77774

• [MoTe2]H_{Mo}⁻¹

E= -846.562517 Hartree, G= -846.668079 Hartree, H= -846.497697 Hartree

- Mo -0.01730 0.05088 -0.15589
- Te -0.15168 -0.56785 2.36033

Mo	2.55556	0.07301	1.47680
Te	3.06649	-1.02821	3.99305
Mo	5.37533	0.02450	3.15955
Te	5.75328	-0.35118	6.04141
Mo	7.95505	-0.00692	4.70015
Te	-0.33136	0.50276	-2.69437
Te	1.26361	2.28179	0.32704
Te	1.78552	-1.82493	-0.53245
Mo	2.29939	0.65693	-1.67255
Te	4.23276	2.14198	1.91620
Te	4.70319	-1.58870	1.04644
Mo	5.44312	0.72957	-0.10762
Te	7.02993	2.25315	3.74414
Te	7.45018	-1.86535	2.91585
Mo	8.26957	0.60170	1.92587
Te	2.97208	1.30434	-4.29345
Te	4.21186	2.68713	-1.58212
Te	4.64277	-0.69403	-2.32128
Mo	5.69692	1.52422	-3.64252
Te	7.34878	2.65550	0.28419

Te	7.73388	-0.73667	-0.46133
Mo	8.44393	1.48460	-1.99537
Te	10.35675	0.47214	3.80236
Te	6.08598	2.16692	-6.29431
Te	7.21012	3.71567	-3.00573
Te	7.70084	-0.32662	-3.91165
Mo	8.27886	2.09974	-4.81793
Te	10.28946	1.19150	0.10757
Te	10.61298	2.10765	-3.57562
Н	1.92538	1.03512	2.76433

• $[MoTe2]H_{Mo}H_{Te}$

E= -847.043392 Hartree, G= -847.109235 Hartree, H= -846.937694 Hartree

Mo	-0.06905	0.12979	-0.17070
Te	-0.23570	-0.59305	2.31499
Mo	2.48703	0.03251	1.49677
Te	3.07517	-1.39217	3.88815
Mo	5.42143	0.00605	3.17914
Te	5.67471	-0.08744	5.99913
Mo	7.97862	-0.06853	4.73571
Te	-0.28626	0.43377	-2.75872

Te	1.28690	2.28126	0.41110
Te	1.73619	-1.75923	-0.52398
Mo	2.26937	0.70177	-1.66428
Te	4.24570	2.05729	1.93485
Te	4.67166	-1.61645	1.03010
Mo	5.41975	0.70088	-0.13428
Te	7.07865	2.20831	3.74484
Te	7.41487	-1.86598	2.91414
Mo	8.31418	0.56685	1.95081
Te	2.99912	1.41393	-4.29844
Te	4.21094	2.70461	-1.54344
Te	4.59837	-0.68090	-2.33962
Mo	5.69317	1.54740	-3.62402
Te	7.32961	2.59710	0.30959
Te	7.73009	-0.75447	-0.44966
Mo	8.43869	1.47881	-1.99021
Te	10.35464	0.62375	3.81323
Te	6.10026	2.16577	-6.30066
Te	7.22769	3.73509	-2.99165
Te	7.67971	-0.32858	-3.90331

- Mo 8.26183 2.09739 -4.79039
- Te 10.30752 1.22117 0.05932
- Te 10.61684 2.09070 -3.60367
- H 1.90454 0.93896 2.83356
- Н 2.46884 -0.39186 5.07934

• $[MoTe2]H_{Mo}H_{Te}+3H_2O+H_3O^+$

E=-1153.159169 Hartree, G=-1153.127269 Hartree, H=-1152.931995 Hartree

Mo	0.60738	1.80036	-0.61734
Te	0.55613	2.27275	1.95213
Mo	3.16079	1.32457	0.99894
Te	3.48852	0.72942	3.76532
Mo	6.04052	0.74062	2.58038
Te	6.66355	1.62155	5.22847
Mo	8.59029	0.22378	4.10686
Te	0.14606	1.24795	-3.11694
Te	2.76294	3.22854	-0.97520
Te	1.46166	-0.63175	-0.09659
Mo	2.72517	0.70986	-2.16410
Te	5.62031	2.38103	0.50962
Te	4.43215	-1.13690	1.28946

Mo	5.82897	-0.02341	-0.72867
Te	8.48174	2.09542	2.24507
Te	7.07829	-1.71911	3.22437
Mo	8.69824	-0.48717	1.33679
Te	3.21142	-0.07939	-4.80758
Te	5.28621	1.56575	-2.88305
Te	4.18615	-1.67657	-2.14128
Mo	5.85585	-0.83139	-4.21967
Te	8.37300	0.91588	-1.05444
Te	7.30924	-2.29664	-0.29032
Mo	8.57679	-1.38280	-2.61772
Te	10.86966	-0.55114	3.03117
Te	6.02880	-1.54387	-6.87144
Te	8.20403	0.55267	-4.51966
Te	6.88738	-3.29399	-3.59416
Mo	8.22205	-1.93043	-5.42756
Te	10.48471	-1.53849	-0.59343
Te	10.53615	-2.43820	-4.26487
Η	3.25463	2.82613	1.83921
Н	3.42627	2.24525	4.49498

0	2.45658	4.98866	3.36616
Η	1.88629	4.22020	3.15033
Η	3.38758	4.64779	3.48939
0	2.58983	6.47309	1.46860
Η	2.34805	7.39450	1.61714
Η	2.46531	5.72462	2.46787
0	5.05061	4.36713	3.43565
Η	5.53373	4.56708	4.24942
Η	5.40236	5.46194	1.83708
0	5.14230	6.09682	1.14720
Η	5.60178	5.83587	0.34305
Η	3.55546	6.43121	1.20041
Н	5.26574	3.42332	3.26316

• Hydronium water cluster (3H₂O_H₃O⁺)

E= -306.0813535 Hartree, G= -306.008336 Hartree, H= -305.961126 Hartree

0	-0.00143	0.00246	0.00670
Η	-0.00357	0.01087	0.96979
Н	0.92276	-0.00206	-0.26268
0	-2.05417	0.91395	-1.31507
Η	-1.90028	1.79847	-1.66583
Η	-1.23663	0.58941	-0.83408
0	-2.05143	-2.44733	-4.05789

- Н -2.03667 -2.46012 -5.02082
- Н -2.82698 -1.29537 -3.25258
- O -3.27466 -0.52471 -2.79352
- Н -4.13495 -0.79766 -2.45516
- Н -2.62970 0.16437 -2.05357
- Н -1.92529 -3.35800 -3.77241

• Heyrovsky TS2 from [MoTe2]H_{Mo}H_{Te}+3H₂O+H₃O⁺

E=-1153.141429 Hartree, G=-1153.113174 Hartree, H=-1152.917149 Hartree

Mo	0.04018	0.12665	-0.58706
Te	-0.13720	0.45071	1.98402
Mo	2.62114	0.27087	1.02133
Те	3.17980	-0.45250	3.75225
Mo	5.62485	0.34415	2.54396
Te	6.02398	1.29472	5.19906
Mo	8.21764	0.43672	4.02663
Те	-0.27996	-0.54287	-3.09037
Те	1.77919	2.03472	-0.95723
Те	1.49779	-2.01549	-0.13787
Mo	2.35554	-0.37431	-2.18733
Те	4.78970	1.87718	0.50281
Те	4.51723	-1.78866	1.15668
Mo	5.57343	-0.34102	-0.83382

Te	7.64139	2.27779	2.21925
Те	7.24606	-1.80311	3.07886
Mo	8.47699	-0.14039	1.22942
Te	2.97626	-0.94113	-4.86218
Te	4.60742	1.12600	-2.92029
Te	4.36926	-2.32221	-2.26064
Mo	5.73474	-1.02256	-4.32191
Te	7.79914	1.21307	-1.12211
Te	7.56890	-2.19357	-0.45290
Mo	8.53472	-0.92305	-2.75389
Te	10.60902	0.29040	2.91699
Te	6.04710	-1.59041	-6.99607
Te	7.65794	0.91118	-4.59002
Те	7.36136	-3.16487	-3.78498
Mo	8.28709	-1.45707	-5.57951
Te	10.44663	-0.65991	-0.73445
Te	10.67159	-1.39636	-4.44506
Н	2.19726	1.83606	1.88569
Н	2.72489	0.91546	4.59844
Ο	1.22252	4.59725	1.47937

Η	0.28342	4.43115	1.60736
Η	1.48678	5.18699	2.19680
0	3.23434	5.30903	-0.28615
Η	3.21585	5.98129	-0.97283
Η	2.31034	5.14512	-0.02980
0	3.28123	3.08853	3.38542
Η	4.12653	2.66073	3.63648
Η	3.51385	3.97292	2.98209
0	3.78689	5.47117	2.35179
Η	4.45217	6.06807	2.70436
Η	3.81636	5.53645	1.37064
Η	2.72957	2.29843	2.48868

• [MoTe2] H_{Te}^{+1}

E= -846.238742 Hartree, G= -846.312637 Hartree, H= -846.140974 Hartree

Mo	0.01445	-0.08630	0.10053
Te	0.26752	0.53720	2.65206
Mo	2.66777	-0.11373	1.35812
Te	3.29921	-0.95254	4.01588
Mo	5.77341	-0.08471	2.88037
Te	6.20991	0.59358	5.56533

Mo	8.39089	-0.00936	4.20788
Те	-0.46471	-0.00587	-2.49460
Те	1.65119	1.93985	-0.26551
Те	1.53149	-2.23889	0.02579
Mo	2.19431	-0.26315	-1.77398
Те	4.63625	1.72409	1.23692
Те	4.64602	-2.08529	1.28858
Mo	5.49803	-0.26937	-0.48345
Te	7.64907	1.99486	2.67426
Те	7.55397	-2.18339	2.97701
Mo	8.54161	-0.20452	1.33718
Те	2.70243	-0.52782	-4.51183
Те	4.37045	1.39128	-2.33394
Те	4.30538	-2.06342	-2.17451
Mo	5.49436	-0.43546	-4.11245
Те	7.62594	1.42172	-0.73788
Те	7.59236	-2.03247	-0.56491
Mo	8.37097	-0.40837	-2.70332
Те	10.73490	0.09510	2.99761
Te	5.67925	-0.42222	-6.85590

Te	7.30084	1.61825	-4.19794
Te	7.23468	-2.54484	-3.98451
Mo	7.98600	-0.54828	-5.55475
Te	10.39742	-0.45176	-0.73933
Te	10.42576	-0.37852	-4.52945
Н	2.83924	0.37138	4.91588

• Water cluster with hydrogen molecule (4H₂O+H₂)

E= -306.901172 Hartree, G= -306.824977 Hartree, H= -306.775177 Hartree

0	-0.02286	-0.01018	0.06509
Η	-0.11845	-0.24446	0.99090
Η	0.95055	-0.03786	-0.09213
0	-0.69946	-2.00565	-1.64931
Η	-1.23066	-1.58515	-2.32928
Η	-0.56138	-1.29590	-0.97736
0	2.61292	-0.38408	-0.50015
Η	3.00011	0.32153	-1.02329
Η	2.48073	-1.11504	-1.14623
0	1.90444	-2.25396	-2.35249
Η	2.15614	-3.16767	-2.20327
Η	0.93085	-2.22841	-2.18726
Η	2.90305	0.19516	-4.06357

- Н 2.67994 -0.44985 -3.75829
 - Tafel TS3

E=-847.032343 Hartree, G=-847.099563 Hartree, H=-846.928387 Hartree

Mo	0.02661	-0.18385	-0.32294
Те	-0.19663	-0.21818	2.27563
Mo	2.44128	0.01173	1.29207
Те	3.37240	-0.00629	4.33030
Mo	6.00411	-0.01817	3.20907
Te	6.67408	-0.22984	5.90039
Mo	8.70596	0.01490	4.23389
Te	-0.09255	-0.77282	-2.86591
Te	1.55738	1.93325	-0.44518
Te	1.58197	-2.29172	-0.06132
Mo	2.51453	-0.27610	-1.84271
Te	4.64295	1.70477	1.44909
Te	4.57799	-1.77852	1.60251
Mo	5.55149	-0.16731	-0.35738
Те	7.77445	2.02831	2.80702
Те	7.76020	-2.12036	2.97817
Mo	8.68020	-0.11685	1.36045
Те	2.73913	0.34067	-4.52146
Те	4.47021	1.64488	-2.03036
Te	4.42625	-2.15478	-1.90333

Mo	5.27816	-0.35488	-3.74649
Te	7.66645	1.54226	-0.64598
Те	7.62423	-1.93199	-0.47150
Mo	8.27726	-0.32356	-2.64822
Те	10.97420	-0.22386	2.92293
Те	5.38163	-0.80154	-6.55113
Те	7.07016	1.69174	-4.11698
Те	7.09872	-2.47714	-3.88592
Mo	7.73454	-0.46381	-5.45496
Те	10.42312	-0.19162	-0.80899
Те	10.22203	-0.68032	-4.57693
Η	1.78612	1.42472	2.05205
Н	2.65543	1.29293	3.54991

• H₂

E=-1.170264 Hartree, G=-1.171713 Hartree, H=-1.156918 Hartree

Η	0.00000	0.00000	0.06943
Н	0.00000	0.00000	0.81331

Table S2: Energy (E), Enthalpy (H) and Gibbs free energy (G) for different steps and transition states (TSs) during HER mechanism in the gas phase calculations are tabulated here.

Systems	Energy (E)	Enthalpy (H)	Gibbs free
---------	------------	--------------	------------

	(in Hartree)	(in Hartree)	energy (G)
			(in Hartree)
[MoTe ₂]	-845.855288	-845.794640	-845.965044
[MoTe ₂] ⁻¹	-845.986444	-845.925586	-846.097228
[MoTe ₂]H _{Te}	-846.421000	-846.359593	-846.532156
[MoTe ₂]H _{Te⁻¹}	-846.541708	-846.480228	-846.651782
TS1	-846.528370	-846.467192	-846.638289
[MoTe ₂]H _{Mo} ⁻¹	-846.558610	-846.497697	-846.668079
[MoTe ₂]H _{Mo} H _{Te}	-846.999057	-846.937694	-847.109235
$[MoTe_2]H_{Mo}H_{Te}+3H_2O+H_3O^+$	-1153.003936	-1152.931995	-1153.127269
TS2	-1152.989854	-1152.917149	-1153.113174
[MoTe ₂]H _{Te} ⁺¹	-846.202217	-846.140974	-846.312637
TS3	-846.989468	-846.928387	-847.099563

Tabel S3: Charge distribution and imaginary frequency count across intermediates and TSs in the HER mechanism.

Systems	Charge	No. of imaginary frequencies
[MoTe ₂]	0	0
[MoTe ₂] ⁻¹	-1	0
[MoTe ₂]H _{Te}	0	0
[MoTe ₂]H _{Te} ⁻¹	-1	0
TS1	-1	1 (-648.14 cm ⁻¹)
[MoTe ₂]H _{Mo} ⁻¹	-1	0
[MoTe ₂]H _{Mo} H _{Te}	0	0
$[MoTe_2]H_{Mo}H_{Te}+3H_2O+H_3O^+$	+1	0
TS2	+1	1 (-787.08 cm ⁻¹)
[MoTe ₂]H _{Te} ⁺¹	+1	0
TS3	0	1 (-516.07 cm ⁻¹)

References

- 1 Y. Huang, R. J. Nielsen, W. A. Goddard and M. P. Soriaga, J. Am. Chem. Soc., 2015, 137, 6692–6698.
- 2 P. C. Jordan, in *Chemical Kinetics and Transport*, Springer, 1979, pp. 269–323.
- 3 Y. Lei, S. Pakhira, K. Fujisawa, X. Wang, O. O. Iyiola, N. Perea López, A. Laura Elías, L. Pulickal Rajukumar, C. Zhou, B. Kabius and others, *ACS Nano*, 2017, **11**, 5103–5112.
- 4 J. Ekka, S. N. Upadhyay, F. J. Keil and S. Pakhira, *Phys. Chem. Chem. Phys.*, 2022, **24**, 265-280.