Supporting Information

Eu-MOF and its composites as turn-off fluorescence sensors for p-

nitrophenol with the application in monitoring catalytic reduction reaction

Bing-Bing Xing,^a Yue-Shu Wang,^a Tao Zhang,^a Jing-Yi Liu,^a Huang Jiao,^a and Ling Xu*^a

^{a.} Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical

Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi Province, P. R. China

Empirical formula	$C_{24}H_{19}N_7O_{14}Eu_2$		
Formula weight	933.38		
Crystal system	triclinic		
Space group	P-1		
a/Å	8.1327(3)		
b/Å	13.4199(14)		
c/Å	16.4494(5)		
α/°	76.483(5)		
β/°	88.538(3)		
$\gamma/^{\circ}$	84.360(5)		
Volume/Å ³	1737.1(2)		
Ζ	2		
$\rho_{calc}g/cm^3$	1.784		
µ/mm ⁻¹	26.209		
F(000)	900.0		
Crystal size/mm ³	$0.20 \times 0.12 \times 0.10$		
2θ range for data collection/°	5.526 to 178.922		
Reflections collected	26180		
Independent reflections	7179 [R_{int} = 0.0870, R_{sigma} = 0.0592]		
Data/restraints/parameters	7179/36/424		
Goodness-of-fit on F ²	1.059		
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.1038$, $wR_2 = 0.2772$		
Final R indexes [all data]	$R_1 = 0.1209, wR_2 = 0.2917$		
$R_{1} = (\Sigma F_{o} - F_{c} / \Sigma F_{o}). wR_{2} = [\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2}) / \Sigma (w F_{o}^{2} ^{2})]^{1/2}$			

Table S1. Crystal data and structure refinement for Eu-MOF.

Table S2. Selected bond distances (Å) and bond angles (°) of Eu-MOF.

Bond distances (Å)		
Eu1-O1=2.325(10)	Eu2-O1 ⁴ =2.407(10)	
Eu1-O12=2.341(9)	Eu2-O11=2.349(9)	
Eu1-O13 ² =2.368(11)	Eu2-O14 ⁵ =2.322(11)	
Eu1-O22=2.426(11)	Eu2-O21=2.432(13)	

Eu1-O24 ³ =2.368(9)	Eu2-O23 ⁶ =2.339(9)		
Eu1-O31=2.389(9)	Eu2-O31=2.565(10)		
Eu1-O1W=2.356(14)	Eu2-O32=2.509(11)		
	Eu2-O2W=2.513(17)		
Boi	nd angles (°)		
O1-Eu1-O12=131.6(4)	O11-Eu2-O21=116.8(4)		
O1-Eu1-O13 ² =78.6(4)	O11-Eu2-O22=72.2(4)		
O1-Eu1-O22=145.4(4)	O11-Eu2-O31=76.0(4)		
$O1-Eu1-O24^3=75.4(4)$	O11-Eu2-O32=126.9(4)		
O1-Eu1-O31=114.9(4)	O11-Eu2-O2W=82.1(5)		
O1-Eu1-O1W=75.5(5)	O14 ⁵ -Eu2-O1 ⁴ =74.8(4)		
O12-Eu1-O13 ² =79.9(4)	O14 ⁵ -Eu2-O11=80.4(4)		
O12-Eu1-O22=75.4(4)	O14 ⁵ -Eu2-O21=78.3(4)		
O12-Eu1-O24 ³ =151.8(4)	O14 ⁵ -Eu2-O22=83.0(4)		
O12-Eu1-O31=96.0(4)	O14 ⁵ -Eu2-O23 ⁶ =81.1(4)		
O12-Eu1-O1W=74.5(5)	O14 ⁵ -Eu2-O31=143.6(4)		
O13 ² -Eu1-O22=87.6(5)	O14 ⁵ -Eu2-O32=148.1(4)		
O13 ² -Eu1-O31=163.5(4)	O14 ⁵ -Eu2-O2W=134.0(5)		
$O24^{3}$ -Eu1-O13 ² =101.8(4)	O21-Eu2-O22=46.7(3)		
O24 ³ -Eu1-O22=76.6(4)	O21-Eu2-O31=88.1(4)		
O24 ³ -Eu1-O31=74.3(4)	O21-Eu2-O32=74.3(4)		
O31-Eu1-O22=75.9(4)	O21-Eu2-O2W=146.7(5)		
O1W-Eu1-O13 ² =113.9(6)	O23 ⁶ -Eu2-O1 ⁴ =78.4(3)		
O1W-Eu1-O22=138.7(5)	O23 ⁶ -Eu2-O11=154.0(4)		
O1W-Eu1-O24 ³ =127.6(5)	O23 ⁶ -Eu2-O21=76.7(4)		
O1W-Eu1-O31=79.9(5)	O23 ⁶ -Eu2-O22=123.2(4)		
O1 ⁴ -Eu2-O21=145.7(4)	O23 ⁶ -Eu2-O31=128.6(3)		
O1 ⁴ -Eu2-O22=146.3(3)	O23 ⁶ -Eu2-O32=76.9(3)		
O1 ⁴ -Eu2-O31=126.0(4)	O23 ⁶ -Eu2-O2W=98.1(5)		
O1 ⁴ -Eu2-O32=122.0(4)	O31-Eu2-O22=63.7(3)		
O1 ⁴ -Eu2-O2W=60.3(5)	O32-Eu2-O22=90.0(3)		
O11-Eu2-O1 ⁴ =79.3(4)	O32-Eu2-O31=51.7(3)		

Symmetry codes: 1 - 1 + x, y, z; 2 - 1 - x, 1 - y, 1 - z; 3 - x, 1 - y, -z; 4 - 1 + x, y, z; 5 - 2 - x, 1 - y, 1 - z; 6 - 2 - x, 1 - y, -z.

Figure S1. The coordination modes of TIPA²⁻ and NBDC²⁻ ligands in Eu-MOF.

Figure S2. The coordination spheres of Eu1 and Eu2 in Eu-MOF.

Figure S3. (a) The experimental PXRD pattern of the Eu-MOF bulk sample compared to the simulated one from the single crystal data; (b) PXRD patterns of Eu-MOF immersing in water and nine kinds of organic solvents for 5 h.

Figure S4. PXRD patterns of Eu-MOF, Pd@Eu-MOF, and Pd@Eu-MOF@SA.

Figure S5. The XPS spectra of Pd@Eu-MOF (a) and Pd⁰ 3d (b) in Pd@Eu-MOF.

Figure S6. (a) The liquid-emission and excitation spectra of H_2NBDC and H_2TIPA recorded at room temperature; (b) the excitation spectra of Eu-MOF, Pd@Eu-MOF and Pd@Eu-MOF@SA recorded at room temperature.

Figure S7. The liquid-emission spectra of Eu-MOF, Pd@Eu-MOF, and Pd@Eu-MOF@SA suspensions recorded at room temperature.

Figure S8. The emission and excitation spectra of the SA gel recorded at room temperature.

Figure S9. Emission spectra of Eu-MOF in water and nine kinds of organic solvents.

Figure S10. The emission spectra (a) and the comparison in I_{618} (b) of blank Eu-MOF and Eu-MOF sensing hydroquinone, m-dihydroxybenzene, pyrocatechol, m-dinitrobenzene, p-nitrobenzoic acid, and p-NP.

Figure S11. (a) The emission spectra (a) and the comparison in I_{618} of blank Eu-MOF and Eu-MOF with p-Np and the interferents.

Figure S12. The plot of I_0/I vs $C_{p\text{-}NP}$ and the fitting curve with $C_{p\text{-}NP}$ = 1-20 $\mu M.$

Figure S13. Fluorescence lifetime of Eu³⁺ in blank Eu-MOF.

Figure S14. UV-vis spectra of Eu-MOF, p-NP, free H₂TIPA and H₂NBDC ligands.

Figure 15. UV-vis spectra of the filtrates after Eu-MOF (a) and Pd@Eu-MOF@SA (b) adsorbing p-NP for 0-60 min.

Figure S16. The adsorption kinetics curves of $q_t (mg \cdot g^{-1}) vs$ adsorption time (T) for Eu-MOF and Pd@Eu-MOF@SA adsorbing p-NP by the pseudo-second-order model.

Table S3. q_e and the rate constants (k_1 and k_2) of Eu-MOF and Pd@Eu-MOF@SA adsorbing p-NP by the pseudo-first-order and the pseudo-second-order models

Adsorbents	Kinetic model	$q_e (mg \cdot g^{-1})$	Rate constant	R^2
En MOE	pseudo-first-order	87.83	$k_1 = 0.10$	0.996
Eu-MOI	pseudo-second-order	105.45	$k_2 = 0.001$	0.984
Pd@Eu-MOF@SA	pseudo-first-order	224.51	$k_1 = 0.15$	0.991
	pseudo-second-order	247.45	$k_2 = 0.001$	0.933

Figure S17. The UV-vis spectra of Eu-MOF adsorbing p-NP with C_{p-NP} ranging 30-60 mg·L⁻¹.

Table S4. q_{max} and the constants of Freundlich (K_F) and Langmuir (K_L) models for Eu-MOF adsorbing p-NP.

Freundlich model		Langmuir model			
n	$K_{ m F} \ ({ m mg}^{-1/n} \cdot { m L}^{1/n} \cdot { m g}^{-1})$	R^2	$\begin{array}{c} q_{max} \ (mg \cdot g^{-1}) \end{array}$	$\frac{K_{\rm L}}{(\rm L \cdot mg^{-1})}$	R^2
1.26	0.807	0.994	2.62×10 ⁵	8.29×10 ⁻⁶	0.958

Figure S18. The time-depending emission spectra of Pd@Eu-MOF (a) and Pd@Eu-MOF@SA (b).

Figure S19. The absorbances of the filtrate and I_{450} of Pd@Eu-MOF@SA in three cycles.

Figure S20. (a) UV-vis spectra of Pd@Eu-MOF@SA adsorbing p-NP in eight adsorption-desorption cycles; (b) the comparison of the adsorption capability in the eight adsorption-desorption cycles.