Promising Wound Healing Activity of *Saussurea costus* Loaded PCL-Gelatin Nanofibers

Jude Majed Lababidi¹, Mostafa Fytory^{1,2}, Abd Elrahman Abouzid³, Jihad El-Qassas^{3,4}, Aya T.Gad⁵, Osama M. Ahmed⁵, Nagwa El-Badri^{3*}, Hassan Mohamed El-Said Azzazy^{1*}

¹Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt.

²Material Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, 62511 Beni-Suef.

³Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt.

⁴Zoology Department, Faculty of Science, Zagazig University, 4541519 Zagazig, Egypt.

⁵Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt.

*Corresponding authors:

Prof. Nagwa El-Badri

Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt.

Email: nelbadri@zewailcity.edu.eg

Prof. Hassan M. E. Azzazy

Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt.

Tel: 00 202 2615 2559

Email: hazzazy@aucegypt.edu

Table of Contents:

List of Figures:

Figure S1. Gas chromatogram of the ethanolic extract of Sc

Figure S2. (A) Release kinetic models of PCL-GL-2% Sc, (B) Release kinetic models of PCL-

GL-4% Sc, and (C) Release kinetic models of PCL-GL-6% Sc.

List of Tables:

Table S1. GC analysis of Sc root ethanolic extract.

Gas Chromatography

Gas chromatogram and compounds present in the ethanolic root extract of Sc with the corresponding percentage are shown Figure S1and Table S1, respectively.

Figure S1. Gas chromatogram of the ethanolic extract of Sc

 Table S1. GC analysis of Sc root ethanolic extract.

No.	Area %	Compound
1	0.065	2,5-Octadecadiynoic acid, methyl ester
2	0.076	Cholest-5-en-3-ol (3)-
3	2.845	6-Hepten-3-one, 5-hydroxy-4-methyl
4	0.102	Germacrene B
5	0.184	trans-Caryophyllene
6	0.087	α-Ionone
7	0.293	β-Chamigrene
8	0.129	α-selinene
9	0.096	Elemol
10	0.098	Junipene
11	0.213	(-)-Caryophyllene oxide
12	0.100	β-Selinenol
13	0.139	α-Eudesmol

14	0.081	1,4,8-Dodecatriene, (E,E,E)-
15	1.274	β-Costol
16	5.22	9,12,15-Octadecatrien-1-ol, (Z,Z,Z)-
17	0.088	Eremophilone
18	0.080	Bergamotol, Z-α-trans-
19	0.072	Andrographolide
20	0.113	Bergamotol, Z-α-trans-
21	0.098	Santalol, cis,a-
22		2-(4a,8-Dimethyl-1,2,3,4,4a,5,6,7-octahydro-
	0.297	naphthalen-2-yl)-prop-2-en-1-ol
23	0.094	α-Santalol
24	1.877	β-Costol-
25	0.960	γ-costol
26	0.195	Aromadendrene oxide-(2)
27	0.083	β-Eudesmol
28		1,3-Bis(4-chlorobenzyl)-5,6-
20	1.044	dihydrobenzo[f]quinazoline
29	5.497	Dihydrodehydrocostus lactone
30	0.336	Costunlide
31	63.139	Eremanthin
32	11.612	Dehydro -Saussurea lactone
33	0.151	Ethyl linoleate
34	0.209	Reynosin
35	0.659	Santamarine
26		Bicyclo[4.4.0]dec-2-ene-4-ol, 2-methyl-9-(prop-1-
50	0.135	en-3-ol-2-yl)-
37	0.725	Reynosin
38	0.102	Retinal
38	0.205	Arachidonic acid methyl ester
40	0.208	Brassicasterol acetate

41	0.066	Linoleic acid, 2,3-bis-(O-TMS)-propyl ester
42	0.698	Betulin
43	0.230	Dimethoxy glycerol docosyl ether

Release Kinetics

Release kinetics model plots with their correlation coefficient (R²) for PCL-GL-2% Sc, PCL-GL-4%Sc, and PCL-GL-6% Sc nanofibers are presented in **Figure S2**.

Figure S2. (A) Release kinetic models of PCL-GL-2% Sc, (B) Release kinetic models of PCL-GL-4% Sc, and (C) Release kinetic models of PCL-GL-6% Sc.