Supporting Information

Exploring a new synthesis route to lithium-excess disordered rock salt (DRX) cathode materials

Matthew S. Chambers^{[a]*}, Tianyu Li^[b], Zhilin Liang^[c], Jong Keum^[d,e], Kevin H Stone^[c], Raphaële J. Clément^[b], Beth L. Armstrong^{[f]*}, Ethan C. Self^{[a]*}

^[a] Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

^[b] Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, CA 93106, USA

^[c] Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

^[d] Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

^[e] Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

^[f] Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

*Corresponding author

Starting models used in Rietveld refinements

T 11 C1

Compound	Reference
Li _{1.2} Mn _{0.4} Ti _{0.4} O ₂ [©]	Moghadam <i>et al</i> . ¹
$Li_{1.1}Mn_{0.8}Ti_{0.1}O_2^{\mbox{S}}$	Moghadam <i>et al.</i> ¹
Li ₂ TiO ₃	Mukai <i>et al.</i> ²
Li ₂ MnO ₃	Boulineau <i>et al.</i> ³
LiMn ₂ O ₄	Berg <i>et al</i> . ⁴
LiMnO ₂	Croguennec <i>et al.</i> ⁵
LiF	Streltsov et al. ⁶
LiNO ₃	Wu <i>et al.</i> ⁷
Mn_2O_3	Geller ⁸
Li_2MnO_2	David <i>et al.</i> ⁹
[©] Structure edited to n	natch stoichiometry, but cell parameters adopted from reference

Structural analysis of oxide precursors

Figure S1 shows powder X-ray diffraction (XRD) patterns obtained on the $Li_{1.2}Mn_{0.5}Ti_{0.1}O_{1.95}$ and Li_{1.2}Mn_{0.7}Ti_{0.1}O_{1.85} precursors produced via the combustion reaction. Both precursors contain multiple crystalline phases including Mn₂O₃ and unreacted LiNO₃. The Li_{1.2}Mn_{0.5}Ti_{0.3}O_{1.95} sample also contains LiMn₂O₄. Because the LiNO₃ has much sharper Bragg peaks than the Mn₂O₃ and LiMn₂O₄ phases, two separate peak shapes were used (all Thompson-Hastings-Cox pseudo-Voigt functions). Notably, good fits are obtained in both patterns without including any Ti-containing phases, but ICP-OES (Table S3) indicates that Ti is present in the precursors as expected. This suggests that Ti⁴⁺ is likely doped into one or more crystalline phases (e.g., $Mn_{2-x}Ti_xO_{3+\delta}$ or $LiMn_{2-x}Ti_xO_{4+\delta}$) or present as an amorphous phase. Due to the similar X-ray form factors of Ti⁴⁺, Mn³⁺, and Mn⁴⁺, the present dataset cannot distinguish the distribution of Mn and Ti across these phases. The presence of unreacted LiNO₃ indicates the combustion reactions did not go to stoichiometric completion. Furthermore, the presence of LiNO₃ explains the hygroscopic nature of the precursors as mentioned in the experimental procedures.

Figure S1 – Rietveld plots (Cu radiation) of precursors produced from combustion reactions including: (a) $Li_{1.2}Mn_{0.5}Ti_{0.3}O_{1.95}$ and (b) $Li_{1.2}Mn_{0.7}Ti_{0.1}O_{1.85}$. Blue curves = observed data; red curves = calculated pattern; grey curves = difference between observed and calculated patterns. Tick marks correspond to reflections arising from each phase.

Summary of the reaction conditions investigated in this study

Table S2 – Summary of synthesis conditions explored in this study. The phase composition of each product was determined through Rietveld refinements which are shown in the corresponding figures. All high-temperature reactions were performed under flowing Ar.

Reactants	Reaction Conditions	Product Composition	Corresponding Figure
$Li_{1.2}Mn_{0.5}Ti_{0.3}O_{1.95}$	1000 °C, 4 h	47.6(8)% DRX 45.9(8)% m-Rock Salt 6.5(5)% LiMn ₂ O ₄	Figure 1a
$Li_{1.2}Mn_{0.5}Ti_{0.3}O_{1.95} + 0.025Li_2O$ (Ground in Air)	1000 °C, 1 h	53.1(7)% DRX 42.6(7)% m-Rock Salt 4.3(3)% LiMn ₂ O ₄	Figure 1b
$Li_{1.2}Mn_{0.5}Ti_{0.3}O_{1.95} + 0.05LiF$ (Ground in Air)	1000 °C, 1 h	94.1(2)% DRX 3.25(18)% m-Rock Salt 2.70(13)% LiMn ₂ O ₄	Figure 2a
$Li_{1.2}Mn_{0.5}Ti_{0.3}O_{1.95} + 0.05LiF$ (Ground in Air)	800 °C, 1 h	86.4(3)% DRX 12.1(6)% m-Rock Salt 1.56(16)% o-Rock Salt	Figure 2b
$Li_{1.2}Mn_{0.5}Ti_{0.3}O_{1.95} + 0.05LiF$ (Ground in Air)	1000 °C, 4 h	69.3(4)% DRX 30.7(4)% m-Rock Salt	Figure S2a
$Li_{1.2}Mn_{0.5}Ti_{0.3}O_{1.95} + 0.05LiF$ (Ground under Ar)	800 °C, 1 h	92.0(2)% DRX 8.0(2)% m-Rock Salt	Figure S2b
$Li_{1.2}Mn_{0.7}Ti_{0.1}O_{1.85}$	1000 °C, 1 h	0.8(2)% LiMn ₂ O ₄ 66.6(5)% m-Rock Salt 28.0(5)% o-Rock Salt 4.6(4)% Li ₂ MnO ₂	Figure 6a
$Li_{1.2}Mn_{0.7}Ti_{0.1}O_{1.85} + 0.15LiF$ (Ground in Air)	1000 °C, 1 h	81.5(8)% DRX 11.8(3)% m-Rock Salt 7.2(9)% LiF	Figure 6b
$Li_{1.2}Mn_{0.7}Ti_{0.1}O_{1.85} + 0.15LiF$ (Ground under Ar)	1000 °C, 1 h	78(4)% DRX 8.1(5)% m-Rock Salt 14(4)% LiF	Figure S2c
$Li_{1.2}Mn_{0.7}Ti_{0.1}O_{1.85} + 0.15LiF$ (Ground under Ar)	800 °C, 1 h	12.6(7)% DRX 33.3(11)% m-Rock Salt 9.5(4)% o-Rock Salt 11.6(6)% LiMn ₂ O ₄ 33(2)% LiF	Figure S2d

Additional Rietveld plots

Figure S2 – Additional Rietveld plots for oxyfluoride products obtained by reacting the oxide precursor with LiF. These plots include (a) $\text{Li}_{1.25}\text{Mn}_{0.5}\text{Ti}_{0.3}\text{O}_{1.95}\text{F}_{0.05}$ (reagents ground in air), $R_{wp} = 9.967\%$, $\chi^2 = 2.883$, (b) $\text{Li}_{1.25}\text{Mn}_{0.5}\text{Ti}_{0.3}\text{O}_{1.95}\text{F}_{0.05}$ (dried reagents ground under Ar), $R_{wp} = 6.677\%$, $\chi^2 = 1.795$, (c) $\text{Li}_{1.35}\text{Mn}_{0.7}\text{Ti}_{0.1}\text{O}_{1.85}\text{F}_{0.15}$ (dried reagents ground under Ar), $R_{wp} = 8.000\%$, $\chi^2 = 2.647$. Blue curves = observed data; red curves = calculated data; grey curves = difference between observed and calculated patterns. Tick marks correspond to reflections arising from the corresponding phase.

¹⁹F ssNMR fits using longer relaxation times (D1 = 20 s)

Figure S3 – Fits against ¹⁹F NMR data with a lifetime of D1 = 20s for (a) $Li_{1.25}Mn_{0.5}Ti_{0.3}O_{1.95}F_{0.05}$ heated at 800 °C for 1h and (b) $Li_{1.35}Mn_{0.7}Ti_{0.1}O_{1.85}F_{0.15}$ heated at 1000 °C for 1 h.

Characterization of Li₃TiO₃F

Figure S4 – Characterization of Li_3TiO_3F including (a) XRD pattern (Cu radiation), (b) ⁷Li ssNMR spectrum, and (c) ¹⁹F ssNMR spectrum.

Additional SEM images

Figure S5 – SEM images of select samples including: (a)–(b) $Li_{1.25}Mn_{0.5}Ti_{0.3}O_{1.95}F_{0.05}$ heated at 800 °C for 1 h (reagents ground in air), (c)–(d) $Li_{1.25}Mn_{0.5}Ti_{0.3}O_{1.95}F_{0.05}$ heated at 800 °C for 1 h (dried reagents ground under Ar), and (e)–(f) $Li_{1.35}Mn_{0.7}Ti_{0.1}O_{1.85}F_{0.15}$ heated at 1000 °C for 1 h (dried reagents ground under Ar).

Additional electrochemical data

Figure S6 – Galvanostatic cycling performance of $Li_{1.35}Mn_{0.7}Ti_{0.1}O_{1.85}F_{0.15}$ cathodes which were prepared by grinding the oxide precursor with LiF either in air ("Ambient Grinding") or under an Ar atmosphere ("Dry Grinding"). (a) Voltage profiles of the ambient-ground and dry-ground samples during the first cycle, (b) voltage profile of the dryground sample during extended cycling, (c) discharge capacity of the ambient-ground and dry-ground samples, and (d) charge/discharge capacity of the dry-ground sample. The anomalous results at cycles 15, 83, 84, 95 and 96 in (c) and (d) are due to power outages.

Figure S7 – First cycle voltage profiles for DRX cathodes with nominal compositions of $Li_{1.25}Mn_{0.5}Ti_{0.3}O_{1.95}F_{0.05}$ and $Li_{1.35}Mn_{0.7}Ti_{0.1}O_{1.85}F_{0.15}$. Samples were cycled galvanostatically at a specific current of ±10 mA/g_{DRX}. $Li_{1.25}Mn_{0.5}Ti_{0.3}O_{1.95}F_{0.05}$ and $Li_{1.35}Mn_{0.7}Ti_{0.1}O_{1.85}F_{0.15}$ were synthesized by annealing at 1000°C for 2 h and 1 h, respectively.

Table S3 – Nominal and quantitative compositions (as determined from ICP-OES/F-ISE measurements) of select DRX oxyfluorides. The lower-than-expected Mn/Ti ratio measured for the $Li_{1.25}Mn_{0.5}Ti_{0.3}O_{1.95}F_{0.05}$ powders was due to errors introduced by an aged (*i.e.*, partially evaporated) Ti-based precursor which altered the effective Ti concentration in solution. The $Li_{1.35}Mn_{0.7}Ti_{0.1}O_{1.95}F_{0.15}$ powders were derived from a fresh Ti reagent which was not subject to this error.

Nominal Formula	Annealing Conditions	Quantitative Formula
Li _{1.25} Mn _{0.5} Ti _{0.3} O _{1.95} F _{0.05}	1000 °C, 1 h	$Li_{1.23}Mn_{0.36}Ti_{0.40}O_{1.95}F_{0.03}$
$Li_{1.25}Mn_{0.5}Ti_{0.3}O_{1.95}F_{0.05}$	800 °C, 1 h	$Li_{1.25}Mn_{0.36}Ti_{0.41}O_{1.95}F_{0.05}$
$Li_{1.35}Mn_{0.7}Ti_{0.1}O_{1.95}F_{0.15}$	1000 °C, 1 h	$Li_{1.26}Mn_{0.72}Ti_{0.11}O_{1.85}F_{0.15}$

References

- 1. Y. Shirazi Moghadam, A. El Kharbachi, T. Diemant, G. Melinte, Y. Hu and M. Fichtner, *Chemistry* of *Materials*, 2021, **33**, 8235-8247.
- 2. K. Mukai, M. Yashima, K. Hibino and T. Terai, ACS Applied Energy Materials, 2019, 2, 5481-5489.
- 3. A. Boulineau, L. Croguennec, C. Delmas and F. Weill, *Solid State Ionics*, 2010, **180**, 1652-1659.
- 4. H. Berg, J. O. Thomas, W. Liu and G. C. Farrington, *Solid State Ionics*, 1998, **112**, 165-168.
- 5. L. Croguennec, P. Deniard, R. Brec and A. Lecerf, *Journal of Materials Chemistry*, 1995, **5**, 1919-1925.
- 6. V. A. Streltsov, V. G. Tsirelson, R. P. Ozerov and O. A. Golovanov, *Kristallografiya*, 1988, **33**, 90-97.
- 7. X. Wu, F. R. Fronczek and L. G. Butler, *Inorganic Chemistry*, 1994, **33**, 1363-1365.
- 8. S. Geller, *Acta Crystallographica Section B*, 1971, **27**, 821-828.
- 9. W. I. F. David, J. B. Goodenough and M. Thomas, *REVUE DE CHIMIE MINERALE*, 1983, **20**, 636-642.