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Supplementary Methods

1 Molecular dataset

The SMILES representations of all SOS1-related molecules from ChEMBL have been 

documented in distinct Excel files. Active and inactive molecules were distinguished 

based on a pChEMBL value of 7 as the threshold; visualizations of their molecular 

structures can be found in the folder named image within the GitHub repository: 

https://github.com/cristinaduo/ML-for-SOS1.

2 Background information on the machine learning algorithms

K-nearest-neighbor Regressor is a versatile non-parametric algorithm extensively 

employed in data analysis and prediction tasks, and it relies on the concept of feature 

similarity, operating under the assumption that data points with similar features tend to 

exhibit similar outcomes.1 In practice, this algorithm identifies the nearest neighbors of 

a given data point within the training dataset based on their feature resemblance and 

employs a local interpolation technique to predict results.1

Ridge Regressor is a commonly used technique when dealing with multicollinearity, 

where independent variables exhibit high correlation.2 By building upon linear 

regression, this algorithm introduces L2 regularization to add a penalty term to the 

regression coefficients, thus mitigating multicollinearity, and enhancing model 

stability.2

Lasso Regressor, akin to ridge regression, combats multicollinearity by incorporating 

https://github.com/cristinaduo/ML-for-SOS1


the L1 regularization to penalize the absolute value of regression coefficients, reduce 

variability and improve the accuracy of linear regression models.3 

Elastic Net Regressor is a flexible algorithm that blends the best of Ridge and Lasso 

Regression methods, and it is well suited for handling the challenges of high 

dimensionality, primarily focusing on feature selection and regression.4 Elastic Net 

combines the L1 (Lasso) and L2 (Ridge) regularization, which controls feature 

selection, prevents overfitting, and enhances the model robustness in the presence of 

multicollinearity. By fine-tuning the mixing ratio between these two regularization 

terms, Elastic Net adapts to various modeling requirements, making it a potent tool for 

regression tasks in diverse scenarios.4 

Decision-tree Regressor is a tree-structured representation of decision-making 

processes that may categorize or predict continuous data, which splits the training data 

from the root node to the decision nodes.5 Providing data type flexibility and legibility 

of resulting models, the Decision-tree Regressor could tackle the multi-class 

classification problems, but it suffers from potential noise and overfitting. 

Random Forest Regressor is an ensemble approach to integrating multiple decision 

trees to tackle the problems of plagued bias and variance in decision trees, in order to 

improve the prediction performance and the model robustness.6 By training each 

decision tree on a distinct data subset and introducing random feature selection for each 

split, Random Forest Regressor could effectively reduce correlations among individual 

trees, and leverage the predictions from multiple decision trees to enhance the 

ensemble’s stability and accuracy.6 Furthermore, its insight into feature importance aids 



feature selection and model interpretation, making Random Forest Regressor a widely 

adopted and potent tool, especially valuable for tackling high-dimensional complex 

data across various applications.6

Extra-Tree Regressor is a powerful ensemble learning technique that builds a 

multitude of randomized decision trees through a meta estimator.7 This approach 

introduces randomness by selecting random subsets of data and features during the tree-

building process, which results in a more robust model with reduced overfitting and a 

higher prediction accuracy through ensemble-based averaging.7

Adaboost Regressor first fits a regressor on the original dataset and then fits 

subsequent copies of the regressor on the same dataset with the instance weights being 

changed in accordance with the error of the most recent prediction, to concentrate on 

challenging instances.8

Gradient Boosting Regressor is a powerful ensemble learning algorithm for 

regression that combines a collection of weak regression models such as decision trees 

in a sequential manner to progressively enhance the predictive performance by 

minimizing the loss function. This approach is particularly effective at capturing 

intricate nonlinear relationships while maintaining robustness, although it may require 

additional tuning and training time compared to alternative algorithms.9 

Support Vector Regressor (SVR) finds a regression plane with the closest possible 

proximity to a subset of data points called support vectors, while allowing a controlled 

degree of deviation from these points.10 SVR is able to capture the underlying patterns 

and relationships within the data while maintaining a balance between the model 



complexity and the predictive accuracy.10

3 External validation dataset

The dataset has been documented in distinct Excel files on GitHub: 

https://github.com/cristinaduo/ML-for-SOS1.

4 Similarity calculation

Similarities between molecules have been calculated from the Morgan fingerprints.

https://github.com/cristinaduo/ML-for-SOS1


Supplementary Tables

Table S1. The optimal hyperparameters of 10 constructed models.

ML models The optimal hyperparameters Search space

Decision Tree
‘criterion’: friedman_mse, 

‘min_samples_split’: 7

‘criterion’ in [ 

squared_error, 

friedman_mse];

‘min_samples_split’ ranges 

from 2 to 9.

Extra Tree -

‘bootstrap’ in [True, False];

‘min_samples_split’ ranges 

from 2 to 9.

Ridge -
‘alpha’ in [0.001, 0.01, 0.1, 

1, 10];

AdaBoost
‘learning_rate’: 1, ‘loss’: 

expomential

‘learning_rate’ in [0.001, 

0.01, 0.1, 1];

‘loss’ in [linear, square,

expomential].

Gradient 

Boosting
‘min_samples_split’: 6

‘min_samples_split’ ranges 

from 2 to 9.

SVR ‘C’: 10, ‘gamma’: auto
‘C’ in [0.001, 0.01, 0.1, 1, 

10, 20, 50, 100];



‘gamma’ in [scale, auto].

K-Neighbors
‘algorithm’: ball_tree, 

‘n_neighbors’: 9, ‘p’: 1

‘n_neighbors’ ranges from 2 

to 10;

‘algorithm’ in [auto, 

ball_tree, kd_tree, brute];

‘p’ in [1, 2].

Lasso ‘alpha’: 0.01, ‘selection’: random

‘alpha’ in [0.001, 0.01, 0.1, 

1, 10];

‘selection’ in [cyclic, 

random].

Elastic Net alpha’: 0.01, ‘l1_ratio’: 0.7.

‘alpha’ in [0.001, 0.01, 0.1, 

1, 10];

‘l1_ratio’ in [0.2, 0.3, 0.4, 

0.5, 0.6, 0.7, 0.8].

Random Forest

‘bootstrap’: False, 

‘max_features’: sqrt, 

‘min_samples_split’: 9

‘bootstrap’ in [True, False]; 

‘max_features’ in [auto, 

log2, sqrt];

‘min_samples_split’ ranges 

from 2 to 9.

Table S2. Algorithms mean performance for model validation using 90% data for 



model refitting, and 10% reserved data for model verification: a measure of overfitting 

and external data validation.

Algorithm Train 𝑅2 Test 𝑅2 Train RMSE Test RMSE

Decision Tree 0.986(0.0019) 0.833(0.0549) 0.185(0.0133) 0.623(0.0998)

Extra Tree 0.996(0.0011) 0.833(0.0566) 0.099(0.0147) 0.622(0.0942)

Ridge 0.992(0.0014) 0.894(0.0187) 0.142(0.0118) 0.500(0.0462)

AdaBoost 0.940(0.0041) 0.898(0.0166) 0.389(0.0132) 0.491(0.0459)

Gradient 

Boosting
0.980(0.0019) 0.900(0.0242) 0.222(0.0103) 0.484(0.0687)

SVR 0.992(0.0015) 0.902(0.0182) 0.144(0.0131) 0.482(0.0495)

K-Neighbors 0.996(0.0011) 0.906(0.0184) 0.099(0.0147) 0.470(0.0461)

Lasso 0.946(0.0032) 0.910(0.0200) 0.367(0.0102) 0.462(0.0571)

Elastic Net 0.955(0.0024) 0.912(0.0189) 0.335(0.0085) 0.456(0.0535)

Random 

Forest
0.984(0.0015) 0.916(0.0145) 0.203(0.0088) 0.445(0.0437)

Table S3. The information of 10% data for model validation.

Series Compound ID Structure
Predicted 

pChEMBL

Actual 

pChEMB

L

1 CHEMBL4529467 8.40 8.70



2 CHEMBL4469357 8.38 8.70

3 CHEMBL4451252 8.38 7.60

4 CHEMBL4435672 8.37 8.52

5 CHEMBL4572922 8.32 7.46

6 CHEMBL4572076 8.27 8.30

7 CHEMBL4539190 8.26 8.52

8 CHEMBL4554249 8.25 8.70

9 CHEMBL4540213 8.24 8.70

10 CHEMBL4441820 8.20 8.40

11 CHEMBL4546387 8.17 8.10

12 CHEMBL4551748 8.14 8.30

13 CHEMBL4459389 8.14 8.30



14 CHEMBL4513254 7.93 8.52

15 CHEMBL4533487 7.81 7.57

16 CHEMBL4464090 7.77 8.10

17 CHEMBL4448274 7.70 7.47

18 CHEMBL4524954 7.68 7.85

19 CHEMBL4463184 7.64 7.44

20 CHEMBL4570224 7.63 7.52

21 CHEMBL4443395 7.63 7.54

22 CHEMBL4515122 7.58 7.46

23 CHEMBL4453639 7.55 7.40

24 CHEMBL4583745 7.52 7.37

25 CHEMBL4473214 7.52 7.44

26 CHEMBL4561965 7.51 7.66



27 CHEMBL4455684 7.46 7.55

Table S4. Inhibition rate for selected carboxylic acid compounds at various 

concentrations in activity confirmation assays. Quantified data represents the mean ± 

SD from two independent biological replicates. 

Inhibition rate (%)

Concentration 

(𝜇g/mL)
50 40 25 10 0.5

CL01545355 61.6 ± 4.0 53.3 ± 0.5 38.0 ± 3.3 17.9 ± 3.3 -1.6 ± 0.2

CL01545365 72.3 ± 2.7 66.6 ± 0.1 53.8 ± 1.6 31.9 ± 2.8 0.8 ± 1.1

CL01545444 49.9 ± 0.5 45.5 ± 0.0 31.1 ± 1.4 14.5 ± 3.3 1.5 ± 1.1

CL01545464 60.5 ± 4.0 55.3 ± 3.2 42.9 ± 3.4 24.2 ± 1.4 3.4 ± 1.8

Table S5. Drug-likeness prediction of the molecule (CL01545365).

Properties Value
Optimal 

Range
Properties Value

Optimal 

Range

Physicochemi

cal

Molecular Weight 389.5 100∼600 MetabolismCYP1A2 

inhibitor

--

Property nHA 7 0∼12 CYP1A2 

substrate

+



nHD 2 0∼7 CYP2C19 

inhibitor

--

TPSA 99.600 0∼140 CYP2C19 

substrate

--

logS -3.675 -4∼0.5 CYP2C9 inhibitor++

logP 4.128 0∼3 CYP2C9 

substrate

--

logD 1.210 1∼3 CYP2D6 

inhibitor

++

Absorption Caco-2 

Permeability

-5.673 >-5.15 CYP2D6 

substrate

--

MDCK 

Permeability

Pgp-inhibitor

1.1 × 

10−5

---

2−20 × 10−6 CYP3A4 

inhibitor

CYP3A4 

substrate

-

++

Pgp-substrate --- Excretion CL 0.857 5∼15

HIA --- T1/2 0.103 3

F20% --- Toxicity LD50 1228.80

2

>500

F30% --- hERG Blockers --

Distribution PPB 96.990% <90% H-HT +

VD 0.245 0.04∼20 DILI +++



BBB Penetration --- AMES ---

Fu 1.630% SkinSen ---

Molecular weight (MW) contains hydrogen atoms. 

nHA: Number of hydrogen bonds acceptors. 

nHD: Number of hydrogen bonds donors. 

TPSA: Topological Polar Surface Area. 

logS: log of the aqueous solubility. 

logP: log of the octanol/water partition coefficient. 

logD: logP at physiological PH 7.4. 

Caco-2 Permeability: apparent Caco-2 cell permeability in log unit.

MDCK Permeability: apparent MDCK cell permeability in cm/s. 

Pgp-inhibitor: possibility of being Pgp-inhibitor. 

Pgp-substrate: possibility of being Pgp-substrate. 

HIA: Human Intestinal Absorption. 

F20%:20% bioavailability.

F30%:30% bioavailability. 

PPB: Plasma Protein Binding. 

VD: Volume Distribution. 

BBB Penetration: Blood-Brain Barrier Penetration. 

Fu: the fraction unbound in plasms. 

CYP1A2 inhibitor: possibility of being inhibitor. 



CYP1A2 substrate: possibility of being substrate. 

CYP2C19 inhibitor: possibility of being inhibitor. 

CYP2C19 substrate: possibility of being substrate.

CYP2C9 inhibitor: possibility of being inhibitor. 

CYP2C9 substrate: possibility of being substrate.

CYP2D6 inhibitor: the possibility of being inhibitor. 

CYP2D6 substrate: the possibility of being substrate. 

CYP3A4 inhibitor: the possibility of being inhibitor. 

CYP3A4 substrate: the possibility of being substrate.

CL: Clearance. 

T1/2: half-life. 

LD50: the dose amount of a tested molecule to kill 50% of the treated animals within a 

given period (mg/kg).

hERG Blockers: the probability of being active. 

H-HT: Human Hepatotoxicity.

DILI: Drug-Induced Liver Injury. 

AMES: Ames Mutagenicity; SkinSen: Skin sensitization.



Supplementary Figures

Figure. S1. Overview of the proposed pipeline for LBVS of SOS1. The framework 

consists of seven steps: 1) Raw data collection from the ChEMBL, data processing 

including curation, cleaning, and deduplicate, and molecular representation generation; 

2) Model construction, and optimization; 3) Evaluating and adjusting the model 

parameters. 4) Virtual screening: molecules are searched from in-house libraries based 

on ML-based LBVS and hits are identified and ranked. 5) Biological experiment: 

KRAS G12C/SOS1 PPI Assay. 6) Molecular docking: hits and receptor interactions 

study; 7) In-silico evaluation of drug-likeness characteristics.



Figure. S2. 2D interaction mode of nine hit compounds with SOS1 protein 

(PDB:6CSM). (A) CL01545444; (B) CL01545464; (C) CL01545365; (D) 

CL01545355; (E) CL00838284; (F) CL01132463; (G) CL00838287; (H) 

CL00817024; (I) CL01027021. The receptor-ligand interaction was visualized using 

the BIOVIA Discovery Studio Visualizer (Version 2023, San Diego, Systèmes).



Figure. S3. Interaction mode comparison of the hit compound and the known inhibitor 

against SOS1 protein (PDB:6CSM). (A) BI-3406; (B) CL01545365; The red dashed 

line represents the hydrogen bond interaction; The protein-ligand interactions were 

analyzed by PLIP (Protein-Ligand Interaction Profiler).11 .
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Figure. S4. The SOS1-KRAS PPI inhibitory activity of BI-3406.
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Figure. S5. IC50 curves of hits CL01545444, CL01545464, CL01545365, and 

CL01545355. 
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