Supplementary Information

Novel sigma 1-antagonists with *cis*-(+)-normetazocine scaffold: synthesis, molecular modeling, and antinociceptive effect

Giuliana Costanzo,¹ Giuseppe Cosentino,¹ Margherita Grasso,² Vincenzo Patamia,¹ Sara Zuccalà,¹ Alessandro Coco,¹ Elisabetta Novello,³ Mahmoud Al-Khrasani,⁴ Raffaele Morrone,⁵ Giovanni Mario Pitari,³ Emanuele Amata,¹ Agostino Marrazzo,¹ Antonio Rescifina,¹ Lorella Pasquinucci¹‡*and Carmela Parenti.¹‡

¹Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.

²Oasi Research Institute - IRCCS, Troina, Italy.

³ Vera Salus Ricerca S.r.l., Via Sigmund Freud 62/B, 96100 Siracusa, Italy.

⁴Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1445 Budapest, Hungary.

⁵CNR - Istituto di Chimica Biomolecolare, Sezione Catania Via del Santuario 110, 95028 Valverde Catania, Italy.

* Corresponding author.

E-mail address: lpasquin@unict.it (Pasquinucci Lorella)

‡These authors share last authorship

Table of contents

Chiral HPLC analysis of compound 7 (Figure S1)						
Graphs of $\sigma 1R K_i$ values of compounds 7-8 and 10-11. (Figure S2)						
Compound 7 characterization by RP-HPLC (Figure S3)						
Compound 7 stability in physiological phosphate buffer solution (Figure S4)						
Compound 7 stability analysis in mouse plasma by RP-HPLC (Figure S5)	7					
Compound 7 estimation of the half-life in mouse plasma (Figure S6)						
¹ H NMR spectra of compounds 6–15 (Figure S7–S16)	9–13					

¹³ C NMR spectra of compounds 6–15 (Figure S17–S26)	14-18
Elemental analysis data (Table S1)	19

Figure S1. Chiral HPLC analysis of compound 7. The composition of diastereomeric mixture was determined by chiral HPLC chromatography and carried out on a Varian system composed of a Varian 9010 pump and Varian 9050 variable wavelength UV-Vis detector. The chiral column was a Chiralcel OJ column from Daicel Chemical Industries (250 x 4.6 mm, 5 μ m particle size). The analysis was performed with a mobile phase hexane-ethanol at 9:1 ratio, at 1.1 mL/min, an injection volume of 10 μ L and the detector wavelength of λ =254 nm. The separation of diastereoisomeric mixture of compound 7 was showed with a peak at t_R = 12.3 min (55.6%) and a peak at t_R = 14.6 min (44.4%,), respectively.

Figure S2. Competitive inhibition of $[^{3}H]$ -(+)-pentazocine (2 nM) binding to guinea pig brain cortex membranes by unlabeled compounds 7, 8, and 10–11 at 10^{-10} – 10^{-5} M concentration range. Data shown are expressed as percent-specific binding.

Figure S3. RP-HPLC analysis of compound 7. Compound 7 (1.3 mM in methanol; injection volume, 10 μ L) provided a sharp peak following RP-HPLC analysis, with an *R*t of 10.52 min. A calibration curve of compound 7 was also performed as described in the *Experiment Section*, which gave a satisfactory linear regression model with a correlation coefficient (R²) of 0.999 and a mathematical equation fit of y = 1482,9x.

Figure S4. Stability in physiological phosphate buffer solution. Overlayed chromatograms of compound 7 in phosphate buffer solution (representative experiment). Test conditions included a blank, T₀, and 8 different incubation times with compound 7 and samples were analysed as described in the *Experiment Section*. At all incubation times, the levels of compound 7 remained constant, indicating its chemical stability up to 300 min under these conditions. Data in the table are expressed in mAU and reflect the mean of a single experiment with samples prepared and injected in duplicate. T0, time zero; A, 15 min; C, 30 min; D, 60 min; F, 90 min; H, 120 min; L, 180 min, N, 240 min; P, 300 min.

Figure S5. Overlayed chromatograms of compound **7** in rat plasma at different incubation times (0 to 60 min).

Figure S6. Estimation of the half-life (in min) of compound **7**, after different incubation times in rat plasma (from 0 to 60 min). Data were processed with GraphPad Prism 8.0 and provided a calculated half-life of 31.07 min.

Figure S7. ¹H NMR spectrum of 6 in CDCl₃.

Figure S8. ¹H NMR spectrum of 7 in CDCl₃.

Figure S9. ¹H NMR spectrum of 8 in CDCl₃.

Figure S10. ¹H NMR spectrum of 9 in CDCl₃.

Figure S11. ¹H NMR spectrum of 10 in CDCl₃.

Figure S12. ¹H NMR spectrum of 11 in DMSO-*d*₆.

Figure S13. ¹H NMR spectrum of 12 in DMSO-*d*₆.

Figure S14. ¹H NMR spectrum of 13 in DMSO-d₆.

Figure S15. ¹H NMR spectrum of 14 in DMSO-*d*₆.

Figure S16. ¹H NMR spectrum of 15 in DMSO-*d*₆.

Figure S17. APT NMR spectrum of 6 in CDCl₃

Figure S18. ¹³C NMR spectrum of 7 in CDCl₃

Figure S19. ¹³C NMR spectrum of 8 in CDCl₃.

Figure S20. APT NMR spectrum of 9 in DMSO-d6.

Figure S21. APT NMR spectrum of 10 in DMSO-d6.

Figure S22. Figure S21. APT NMR spectrum of 11 in DMSO-d6.

Figure S23. APT NMR spectrum of 12 in DMSO-d6.

Figure S24. APT NMR spectrum of 13 in DMSO-d6.

Figure S25. APT NMR spectrum of 14 in DMSO-*d*₆.

Figure S26. APT NMR spectrum of 15 in DMSO-d6.

			Calcd			Found		
Compd	Formula	MW	С	Н	Ν	С	Н	Ν
6	C25H31NO3	393.53	76.30	7.94	3.56	76.40	7.90	3.55
7	C26H33NO3	407.55	76.62	8.16	3.44	76.67	8.15	3.46
8	C ₂₇ H ₃₅ NO ₃	421.57	76.92	8.37	3.32	76.95	8.33	3.35
9	C ₁₈ H ₂₅ NO ₃	303.40	71.26	8.31	4.62	71.23	8.34	4.63
10	C19H27NO3	317.43	71.89	8.57	4.41	71.91	8.59	4.40
11	C23H27NO3	365.47	75.59	7.45	3.83	75.63	7.43	3.85
12	C ₂₄ H ₂₉ NO ₃	379.49	75.96	7.70	3.69	76.95	7.75	3.59
13	C ₂₅ H ₃₁ NO ₃	393.52	76.30	7.94	3.56	76.27	7.80	3.55
14	C17H23NO3	289.37	70.56	8.01	4.84	70.53	8.03	4.86
15	C ₁₈ H ₂₅ NO ₃	303.40	71.26	8.31	4.62	71.27	8.30	4.63

Table S1. Elemental analysis data for compounds 6–15.