SUPPORTING INFORMATION

Design, synthesis, and evaluation of benzhydrylpiperazinebased novel dual COX-2/5-LOX inhibitors with antiinflammatory and anti-cancer activity

Poorvi Saraf^a, Bhagwati Bhardwaj^a, Akash Verma^a, Mohammad Aquib Siddiqui^b, Himanshu Verma^b, Pradeep Kumar^c, Samridhi Srivastava^a, Sairam Krishnamurthy^b, Saripella Srikrishna^c, Sushant Kumar Shrivastava^a*

a. Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India

b. Pharmacology Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India

c. Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India

*Corresponding Author: <u>skshrivastava.phe@itbhu.ac.in</u>; Tel.: +91-945-2156-527

List of Figures

Figure S1. 2-D docking poses PDB Id- 3LN1: (A) Celecoxib (B) Hit 1 ChEMBL342253 (C) Hit 2
ChEMBL47948555
Figure S2. 2-D docking poses PDB Id- 6N2W: (A) Zileuton (B) Hit 1 ChEMBL342253 (C) Hit 2
ChEMBL4794855
Figure S3. MD Simulation studies of screened hit 1 compound ChEMBL342253-COX-2 (3LN1)
docked complex: [A] 2D-representation showing percent interaction with active site amino acid
residues; [B] RMSD graph of ChEMBL342253 for 100ns run; [C] Histogram depicting interaction
between ChEMBL342253 and protein7
Figure S4. MD Simulation studies of screened hit 2 ChEMBL4794855-COX-2 (3LN1) docked
complex: [A] 2D-representation showing percent interaction with active site amino acid residues; [B]
RMSD graph of ChEMBL4794855 for 100ns run; [C] Histogram depicting interaction between
ChEMBL342253 and protein
Figure S5. General structure of the designed compounds 9a-u9
Figure S6. 2-D docking poses PDB Id- 3LN1: (A) Celecoxib (B) Compound 9d11
Figure S7. 2-D docking poses PDB Id- 6N2W: (A) Zileuton (B) Compound 9d11
Figure S8. Microscopic evaluation of rat heart tissues (H & E staining): P, display control group with
well-organized tissues and nuclei; Q, physiology of heart of rats treated with isoproterenol (red arrows)
showing portion of damaged tissues and dislocated nuclei; R , displaying the celecoxib group with minor
damage to the heart tissues; S & T, showed the promising derivative 9d and 9g with normal tissue
framework and well-organized nuclei
Figure S9. Histogram represents percent of fly eclosed in untreated control group and 9d treated with
$10~\mu M,$ and $50~\mu M$ concentrations14
Figure S10. The drug release profile of orally administered drug 9d in the rat model15
Figure S11. ¹ H NMR spectra of target compound 517
Figure S12. ¹³ C NMR spectra of target compound 5
Figure S13. ¹ H NMR spectra of target compound 8b
Figure S14. ¹³ C NMR spectra of target compound 8b
Figure S15. ¹ H NMR spectra of target compound 8d19
Figure S16. ¹³ C NMR spectra of target compound 8d19
Figure S17. ¹ H NMR spectra of target compound 8e
Figure S18. ¹³ C NMR spectra of target compound 8e
Figure S19. ¹ H NMR spectra of target compound 8g
Figure S20. ¹³ C NMR spectra of target compound 8g

Figure	s21.	¹ H NMR spectra of target compound 81 .	22
Figure	s22.	¹³ C NMR spectra of target compound 81.	22
Figure	e S23.	¹ H NMR spectra of target compound 9b .	24
Figure	s24.	¹³ C NMR spectra of target compound 9b .	24
Figure	s 825.	HRMS [M + H] ⁺ spectra of target compound 9b.	25
Figure	s26.	HPLC chromatogram of target compound 9b	26
Figure	s27.	¹ H spectra of target compound 9d	27
Figure	s 828 .	¹³ C spectra of target compound 9d	27
Figure	e S29.	HRMS $[M + H]^+$ spectra of target compound 9d .	28
Figure	s30.	HPLC chromatogram of target compound 9d	29
Figure	s31.	¹ H spectra of target compound 9e	30
Figure	s32.	¹³ C spectra of target compound 9e	30
Figure	s 833.	HRMS spectra of target compound 9e	31
Figure	s34.	HPLC chromatogram of target compound 9e	32
Figure	s 835.	¹ H spectra of target compound 9g	33
Figure	s S36.	¹³ C spectra of target compound 9g	33
Figure	s 837.	HRMS spectra of target compound 9g	34
Figure	s S38.	HPLC chromatogram of target compound 9g	35
Figure	s S39	¹ H spectra of compound 91	36
Figure	s40.	¹³ C spectra of compound 91	36
Figure	s41.	HRMS spectra of target compound 91	37
Figure	s42.	HPLC chromatogram of target compound 91	38
Figure	s43.	¹ H spectra of compound 9a	40
Figure	s44.	¹ H spectra of compound 9c	40
Figure	s45.	¹ H spectra of compound 9f	41
Figure	s46.	¹ H spectra of compound 9h	41
Figure	s47.	¹ H spectra of compound 9i	42
Figure	s48.	¹ H spectra of compound 9 j	42
Figure	s 849 .	¹ H spectra of compound 9k	43
Figure	e S50.	¹ H spectra of compound 9m	43
Figure	s51.	¹ H spectra of compound 9n	44
Figure	e S52.	¹ H spectra of compound 90	44
Figure	s53.	¹ H spectra of compound 9 p	45
Figure	s54.	¹ H spectra of compound 9q	45

Figure S55. ¹ H spectra of compound 9s	46
Figure S56. ¹ H spectra of compound 9t	46
Figure S57. ¹ H spectra of compound 9u	47

List of Tables

Table S1. Docking scores of the compounds and standard with (A) COX-2 and (B) 5-1	LOX
enzymes	10
Table S2. MM-GBSA analysis of compound 9d with COX-2 and 5-LOX enzymes	12
Table S3 In silico calculations of molecular characteristics	12

Figure S1. 2-D docking poses PDB Id- 3LN1: (A) Celecoxib (B) Hit 1 ChEMBL342253 (C) Hit 2 ChEMBL4794855

Figure S2. 2-D docking poses PDB Id- 6N2W: (A) Zileuton (B) Hit 1 ChEMBL342253 (C) Hit 2 ChEMBL4794855

Figure S3. MD Simulation studies of screened hit 1 compound ChEMBL342253-COX-2 (3LN1) docked complex: [A] 2D-representation showing percent interaction with active site amino acid residues; [B] RMSD graph of ChEMBL342253 for 100ns run; [C] Histogram depicting interaction between ChEMBL342253 and protein.

The RMSD graph showed that the hit obtained from the CHEMBL database did not exhibit RMSD within the acceptable range of 1-3 Å. Moreover, the hit did not show favourable interactions with some important amino acid residues which are essential for the activity. Thus, the hit was further modified to develop novel molecules to enhance the stability of the docked molecules in molecular dynamic simulation run. Interaction with the active site amino acid residues were minimum in the hit ChEMBL342253, while the designed molecule displayed favourable interactions which are important for overall stability of the inhibitors in the active site of COX-2 enzyme.

Figure S4. MD Simulation studies of screened hit 2 ChEMBL4794855-COX-2 (3LN1) docked complex: [A] 2D-representation showing percent interaction with active site amino acid residues; [B] RMSD graph of ChEMBL4794855 for 100ns run; [C] Histogram depicting interaction between ChEMBL342253 and protein.

The second hit obtained from the CHEMBL database (ChEMBL4794855) was also checked for its molecular stability, but the results were unsatisfactory. RMSD was outside the acceptable range of 1-3Å and the molecule did not show favorable interactions with the crucial amino acid residues. While, in contrast to this, the designed molecule displayed molecular stability and interactions with the important amino acid residues required for the activity of the inhibitor molecules.

Figure S5. General structure of the designed compounds 9a-u

	Compounds	Docking Scores on		
S.No.		COX-2 (PDB:3LN1)	5-LOX (PDB: 6N2W)	
1.	Hit 1 ChEMBL342253	-10.711	3.347	
2.	Hit 2 ChEMBL4794855	-10.521	3.142	
3.	9d	-10.830	-5.859	
4.	9g	-8.440	-4.372	
5.	Celecoxib	-12.636	NA	
6.	Zileuton	NA	-5.287	

Table S1. Docking scores of hits ChEMBL database, compounds, and standard celecoxib for COX-2 and zileuton for 5-LOX enzymes

Figure S6. 2-D docking poses PDB Id- 3LN1: (A) Celecoxib (B) Compound 9d

Figure S7. 2-D docking poses PDB Id- 6N2W: (A) Zileuton (B) Compound 9d

Fnzyme targets	Compounds	ΔG binding free	
	Compounds	energy	
COX-2	Celecoxib	-41.416	
	9d	-36.628	
5-LOX	Zileuton	-44.286	
	9d	-48.907	

Table S2. MM-GBSA analysis of compound 9d with COX-2 and 5-LOX enzymes

Table S3. In silico calculations of molecular characteristics

Comnd	Mol	Donor	Acceptor	QPlogPo/w	n		
Compa	wt.	HB	HB		H violations	QriogrCio	Qriogroci
Rule	< 500	≤5	≤ 10	≤ 5	≤1	4-18	8-43
9d	479.4	0.0	6.5	4.9	0	16.4	21.8
Celecoxib	383.8	2.0	5.5	3.3	0	10.8	20.2
Zileuton	231.2	3.0	3.7	0.9	0	8.5	14.6

Drug-likeliness determination by Qikprop module

The drug-likeliness for the most promising compound **9d** and the standard drugs were determined using the Qikprop Software module of Schrödinger Maestro 2018.1 as shown in Table S3. The prediction ensured that the compound abided by Lipinski's rule along with prediction of other important parameters including Log P estimation. The experimental Log P values in the range of ≤ 5 and other molecular characteristics determine if a novel compound with specific pharmacological potential would be considered an orally active medication, crucial in obtaining good bioavailability in humans.

Figure S8. Microscopic evaluation of rat heart tissues (H & E staining): **P**, display control group with well-organized tissues and nuclei; **Q**, physiology of heart of rats treated with isoproterenol (red arrows) showing portion of damaged tissues and dislocated nuclei; **R**, displaying the celecoxib group with minor damage to the heart tissues; **S** & **T**, showed the promising derivative **9d** and **9g** with normal tissue framework and well-organized nuclei.

Figure S9. Histogram represents percent of fly eclosed in untreated control group and 9d treated with 10 μ M, and 50 μ M concentrations.

Figure S10. The drug release profile of orally administered drug 9d in the rat model.

¹H NMR, ¹³C NMR spectra of the representative intermediate compounds

Figure S12. ¹³C NMR spectra of target compound 5.

Figure S14. ¹³C NMR spectra of target compound 8b

110 100 f1 (ppm)

Figure S17. ¹H NMR spectra of target compound 8e.

Figure S18. ¹³C NMR spectra of target compound 8e.

Figure S19. ¹H NMR spectra of target compound 8g.

Figure S20. ¹³C NMR spectra of target compound 8g.

Figure S21. ¹H NMR spectra of target compound 8l.

Figure S22. ¹³C NMR spectra of target compound 8l.

¹H NMR, ¹³C NMR, HRMS, and HPLC spectra of the representative final compounds

(9b, 9d, 9e, 9g, 9l)

Figure S23.¹H NMR spectra of target compound 9b.

Figure S24. ¹³C NMR spectra of target compound 9b.

Figure S25. HRMS $[M + H]^+$ spectra of target compound 9b.

Figure S26. HPLC chromatogram of target compound 9b

Percentage purity of compound 9b:

- ✓ Determined using the Agilent 1200 Infinity high-performance liquid chromatography (HPLC) system, USA.
- ✓ Column: Quasar $C_{18}250 \times 4.6$ mm, 5µm Cat. No. N9308801
- ✓ Mobile phase: Methanol (90): Water (10)
- ✓ Flow rate: 1ml/min.
- ✓ Sample volume: 20 µl
- ✓ Detection range: $\lambda max = 254$

Figure S28. ¹³C spectra of target compound 9d

Figure S29. HRMS $[M + H]^+$ spectra of target compound 9d.

Figure S30. HPLC chromatogram of target compound 9d

Percentage purity of compound 9d:

- ✓ Determined using the Agilent 1200 Infinity high-performance liquid chromatography (HPLC) system, USA.
- ✓ Column: Quasar $C_{18}250 \times 4.6$ mm, 5µm Cat. No. N9308801
- ✓ Mobile phase: Methanol (90): Water (10)
- ✓ Flow rate: 1ml/min.
- ✓ Sample volume: 20 µl
- ✓ Detection range: λ max = 254

Figure S32. ¹³C spectra of target compound 9e

Figure S33. HRMS spectra of target compound 9e

Figure S34. HPLC chromatogram of target compound 9e

Percentage purity of compound 9e:

- ✓ Determined using the Agilent 1200 Infinity high-performance liquid chromatography (HPLC) system, USA.
- ✓ Column: Quasar $C_{18}250 \times 4.6$ mm, 5µm Cat. No. N9308801
- ✓ Mobile phase: Methanol (90): Water (10)
- ✓ Flow rate: 1ml/min.
- ✓ Sample volume: 20 μ l
- ✓ Detection range: λ max = 254

Figure S36. ¹³C spectra of target compound 9g

Figure S37. HRMS spectra of target compound 9g

Figure S38. HPLC chromatogram of target compound 9g

Percentage purity of compound 9g:

- ✓ Determined using the Agilent 1200 Infinity high-performance liquid chromatography (HPLC) system, USA.
- ✓ Column: Quasar $C_{18}250 \times 4.6$ mm, 5µm Cat. No. N9308801
- ✓ Mobile phase: Methanol (90): Water (10)
- ✓ Flow rate: 1ml/min.
- ✓ Sample volume: 20 µl
- ✓ Detection range: $\lambda max = 254$

Figure S40. 13 C spectra of compound 91

Figure S41. HRMS spectra of target compound 91

Figure S42. HPLC chromatogram of target compound 91

Percentage purity of compound 9i:

- ✓ Determined using the Agilent 1200 Infinity high-performance liquid chromatography (HPLC) system, USA.
- ✓ Column: Quasar $C_{18}250 \times 4.6$ mm, 5µm Cat. No. N9308801
- ✓ Mobile phase: Methanol (90): Water (10)
- ✓ Flow rate: 1ml/min.
- ✓ Sample volume: 20 µl
- ✓ Detection range: λ max = 254

¹H NMR spectra of each of the corresponding final <u>compounds</u>

Figure S48. ¹H spectra of compound 9j

Figure S54. ¹H spectra of compound 9q

Figure S56. ¹H spectra of compound 9t

Figure S57. ¹H spectra of compound 9u