Supplementary Information (SI) for RSC Medicinal Chemistry. This journal is © The Royal Society of Chemistry 2024

Novel Curcumin-based Analogues as Potential VEGFR2 Inhibitors with Promising Metallic Loading Nanoparticles: Synthesis, Biological Evaluation, and Molecular Modelling Investigation

Asmaa S. A. Yassen^{1,2,*}, Sherief M. Abdel-Wahab^{3,*}, Khaled M. Darwish^{4,2}, Mohamed S. Nafie^{5,} ⁶, Reda F. A. Abdelhameed ^{7, 8}, Gharieb S. El-Sayyad ^{9, 10}, Ahmed I. El-Batal¹⁰, Khadiga M. Attia³, Hosam A. Elshihawy¹, Ranza A. Elrayess¹

- ¹Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt. (<u>Asmaa_yaseeen@pharm.suez.edu.eg</u>), (hossameldeen ahmed@pharm.suez.edu.eg), (ranza.el-rayes@pharm.suez.edu.eg)
- ²Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt.
- ³Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt. (<u>sherief.abdalwahab@must.edu.eg</u>) (<u>Khadeja.attia@must.edu.eg</u>)
- ⁴Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt. (<u>khaled_darwish@pharm.suez.edu.eg</u>)
- ⁵Department of Chemistry, College of Sciences, University of Sharjah (P.O. 27272), Sharjah, United Arab Emirates. (<u>Mohamed.ElSayed@sharjah.ac.ae</u>)
- ⁶Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt. (<u>Mohamed nafie@science.suez.edu.eg</u>)
- ⁷Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala City, Suez 43713, Egypt. (<u>reda.fouad@gu.edu.eg</u>)
- ⁸Pharmacognosy Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
- ⁹Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, New Galala City, Suez 43713, Egypt. (<u>Gharieb.Elsayyad@gu.edu.eg</u>)
- ¹⁰Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt. (<u>aelbatal2000@gmail.com</u>)

*Corresponding authors:

Asmaa S. A. Yassen: Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Email: <u>asmaa_yaseeen@pharm.suez.edu.eg</u>

Sherief M. Abdel-Wahab: Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt; Email: sherief.abdalwahab@must.edu.eg

2. Materials and Methods

2.1. Chemistry

2.1.1. Instrument

Melting points were measured with Gallenkamp melting point apparatus and were uncorrected. The structure of the target compounds was confirmed by IR (Pye-Unicam SP-3-300 infrared spectrophotometer, KBr disks), ¹H NMR (400 MHz, Varian Mercury VX-300 and Bruker Avance III NMR spectrometer) and ¹³C NMR (100 MHz, BRUKERNMR spectrometer, BRUKER, Manufacturing & Engineering Inc., Anaheim, CA, USA). The abbreviations used are as follows: s, singlet; d, doublet; m, multiplet. The mass spectra (EI-MS) were recorded on a Shimadzu GCMSQP-1000EX mass spectrometer at 70 eV. UV fluorescent silica gel Merck 60 F254plates were used to monitor the reactions and were visualized using a UV lamp.

2.1.2. Chemicals and Reagents

Aniline, 4-methoxy aniline, 4-chloro aniline, triethyl amine, chloroacetyl chloride, piperidine 4- one hydrochloride, 2-furaldehyde, benzaldehyde, 4-chloro benzaldehyde, 4-methoxy benzaldehyde, 3,4-dimethoxy benzaldehyde, 3,4,5 trimethoxy benzaldehyde, were purchased from Aldrich (USA). Solvents and other reagents were of pure grade and used without further purification.

3. Results and Discussion

3.3. Molecular Modeling Investigation

Table **S1.** MM/GBSA binding energies and per-residue energy contributions for the hotspot VEGFR2 amino acids based on FastDRH server analysis.

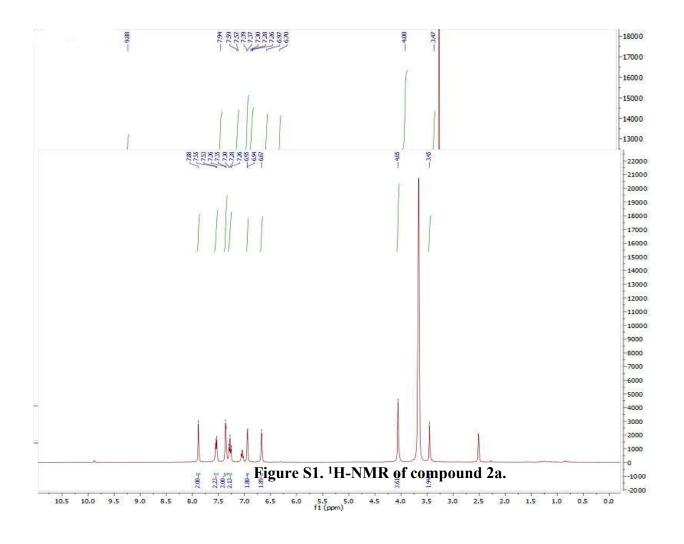
Ligand	MM_GBSA	Per-residue MM/GBSA energy contributions
4b	-47.68	
		A-LEU-840 A-GLY-841 A-GLY-841 A-GLY-841 A-GLY-843 A-GLY-845 A-NAL-848 A-VAL-848 A-VAL-848 A-VAL-865 A-VAL-848 A-VAL-848 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-916 A-VAL-8914 A-VAL-916 A-VAL-8914 A-VAL-916 A-VAL-8914 A-VAL-916 A-VAL-916 A-VAL-8914 A-VAL-8914 A-VAL-916 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-916 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8916 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-8916 A-VAL-8914 A-VAL-8914 A-VAL-8914 A-VAL-914 A-VAL-914 A-VAL-8914 A-VAL-8914 A-VAL-914 A-VA
4d	-55.92	A-LEU-840 A-GLY-841 A-GLY-841 A-ARG-842 A-CLY-843 A-BHE-845 A-VAL-848 A-VAL-848 A-VAL-865 A-VAL-855 A-VAL-
4e	-58.06	
		A-LEU-840 - A-GLY-841 - A-GLY-843 - A-GLY-843 - A-CLY-845 - A-VAL-846 - A-VAL-865 - A-VAL-865 - A-VAL-865 - A-VAL-865 - A-VAL-865 - A-VAL-865 - A-VAL-865 - A-VAL-866 - A-VAL-869 - A-VAL-816 - A-VAL-916 - A-CYS-1045 - A-GLY-1036 - A-GLY-1049 - A-ILE-1053 - A-ILE-1053 - A-ILE-1053 - A-ILE-1053 -
4f	-54.27	
		A-LEU-840 A-GLY-841 A-GLY-841 A-GLY-841 A-ALA-844 A-LA-845 A-VAL-845 A-VAL-849 A-VAL-865 A-VAL-865 A-VAL-865 A-VAL-865 A-VAL-865 A-VAL-865 A-VAL-865 A-VAL-865 A-VAL-891 A-VAL-891 A-VAL-891 A-VAL-916 A-VAL-9

Sorafenib	-63.15	
		A-LEU-840 A-PHE-845 A-VAL-848 A-VAL-865 A-VAL-865 A-VAL-866 A-VAL-867 A-VAL-867 A-VAL-868 A-VAL-888 A-VAL-899 A-LEU-888 A-VAL-914 A-LEU-915 A-VAL-914 A-LEU-915 A-VAL-914 A-LEU-918 A-VAL-914 A-LEU-1019 A-LEU-1019 A-LEU-1019 A-LEU-1019 A-LEU-1019 A-LEU-1019 A-LEU-1019 A-LEU-1016 A-LEU-1019 A-LEU-1019 A-LEU-1016 A-LEU-1004 A-LEU-1004 A-LEU-1004 A-LEU-1004 A-LEU-10
		Residue
		⊏ = <u>1</u>

Table S2. Toxicity model report of compound 4e using ProTox 3.0 webserver

Classification	Target	Shorthand	Prediction	Probability
Organ toxicity	Hepatotoxicity	dili	Inactive	0.72
Organ toxicity	Nephrotoxicity	nephro	Inactive	0.66
Organ toxicity	Cardiotoxicity	cardio	Inactive	0.78
Toxicity end points	Carcinogenicity	carcino	Inactive	0.6
Toxicity end points	Immunotoxicity	immuno	Inactive	0.85
Toxicity end points	Mutagenicity	mutagen	Inactive	0.68
Toxicity end points	Cytotoxicity	cyto	Inactive	0.65
Toxicity end points	Nutritional toxicity	nutri	Inactive	0.54
Tox21-Nuclear receptor signalling pathways	Aryl hydrocarbon Receptor (AhR)	nr ahr	Inactive	0.8
Tox21-Nuclear receptor signalling pathways	Androgen Receptor (AR)	nr ar	Inactive	0.95
Tox21-Nuclear receptor signalling pathways	Androgen Receptor Ligand Binding Domain (AR-LBD)	nr ar Ibd	Inactive	0.95
Tox21-Nuclear receptor signalling path ways	Aromatase	nr aromatase	Inactive	0.9
Tox21-Nuclear receptor signalling path ways	Estrogen Receptor Alpha (ER)	nr er	Inactive	0.8
Tox21-Nuclear receptor signalling pathways	Estrogen Receptor Ligand Binding Domain (ER-LBD)	nr er Ibd	Inactive	0.9
Tox21-Nuclear receptor signalling pathways	Peroxisome Proliferator Activated Receptor Gamma (PPAR-Gamma)	nr_ppar_gamma		0.96
Tox21-Stress response pathways	Nuclear factor (erythroid-derived 2)-like 2/antioxidant responsive element (nrf2/ARE)	sr are	Inactive	0.8
Tox21-Stress response pathways	Heat shock factor response element (HSE)	sr hse	Inactive	0.8
Tox21-Stress response pathways	Mitochondrial Membrane Potential (MMP)	sr mmp	Inactive	0.7
Tox21-Stress response pathways	Phosphoprotein (Tumor Supressor) p53	sr p53	Inactive	0.8
Tox21-Stress response pathways	ATPase family AAA domain-containing protein 5 (ATAD5)	sr atad5	Inactive	0.9
Molecular Initiating Events	Thyroid hormone receptor alpha (THR α)	mie thr alpha	Inactive	0.8
Molecular Initiating Events	Thyroid hormone receptor beta (THRB)	mie thr beta	Inactive	0.6
Molecular Initiating Events	Transtyretrin (TTR)	mie ttr	Inactive	0.8
Molecular Initiating Events	Ryanodine receptor (RYR)	mie ryr	Inactive	0.92
Molecular Initiating Events	GABA receptor (GABAR)	mie gabar	Inactive	0.7
Molecular Initiating Events	Glutamate N-methyl-D-aspartate receptor (NMDAR)	mie nmdar	Inactive	0.9
Molecular Initiating Events	alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR)	mie ampar	Inactive	0.9
Molecular Initiating Events	Kainate receptor (KAR)	mie kar	Inactive	0.5
Molecular Initiating Events	Achetylcholinesterase (AChE)	mie ache	Inactive	0.52
Molecular Initiating Events	Constitutive androstane receptor (CAR)	mie car	Inactive	0.9
Molecular Initiating Events	Pregnane X receptor (PXR)	mie pxr	Inactive	0.5
0	NADH-quinone oxidoreductase (NADHOX)		Inactive	0.9
Molecular Initiating Events	· · · · · ·	mie_nadhox		0.9
Molecular Initiating Events Metabolism	Na+/I- symporter (NIS) Cytochrome CYP1A2	mie_nis CYP1A2	Inactive Inactive	0.84
Metabolism Matabolism	Cytochrome CYP2C19	CYP2C19	Inactive	0.7
Metabolism	Cytochrome CYP3A4	CYP3A4	Inactive	0.6
Metabolism	Cytochrome CYP2E1 Toxicity targets	CYP2E1	Inactive	0.9

Possible binding to toxicity targets is shown below. For more information on the targets, please click on the individual abbreviations.



AA2AR	ADRB2	ANDR	AOFA	CRFR1	DRD3	ESR1	ESR2	GCR	HRH1	NR112	OPRK	OPRM	PDE4D	PGH1	PRGR

List of Supplementary	Figures
-----------------------	---------

	Page No.
Chemistry Supplementary Figures	
¹ H-NMR and ¹³ C-NMR spectra	
Figure S1. ¹ H-NMR of compound 2a	8
Figure S2 . ¹ H-NMR of compound 2a with D ₂ O	8
Figure S3. ¹³ C-NMR of compound 2a	9
Figure S4. ¹ H-NMR of compound 2b	10
Figure S5. ¹³ C-NMR of compound 2b	11
Figure S6. ¹ H-NMR of compound 2c	12
Figure S7. ¹³ C-NMR of compound 2c	13
Figure S8. ¹ H-NMR of compound 4a	14
Figure S9. ¹³ C-NMR of compound 4a	15
Figure S10. ¹ H-NMR of compound 4b	16
Figure S11. ¹³ C-NMR of compound 4b	17
Figure S12. ¹ H-NMR of compound 4c	18
Figure S13. ¹³ C-NMR of compound 4c	19
Figure S14. ¹ H-NMR of compound 4d	20
Figure S15. ¹³ C-NMR of compound 4d	21
Figure S16. ¹ H-NMR of compound 4e	22
Figure S17. ¹³ C-NMR of compound 4e	23
Figure S18. ¹ H-NMR of compound 4f	24
Figure S19. ¹³ C-NMR of compound 4f	25
Figure S20. ¹ H-NMR of compound 4g	26
Figure S21. ¹³ C-NMR of compound 4g	27
Figure S22. ¹ H-NMR of compound 4h	28
Figure S23. ¹³ C-NMR of compound 4h	29
Figure S24. ¹ H-NMR of compound 4i	30
Figure S25. ¹³ C-NMR of compound 4i	31
Figure S26. ¹ H-NMR of compound4j	32
Figure S27. ¹³ C-NMR of compound4j	33
Figure S28. ¹ H-NMR of compound 4k	34
Figure S29. ¹³ C-NMR of compound 4k	35
Figure S30. ¹ H-NMR of compound 4l	36
Figure S31. ¹³ C-NMR of compound 4l	37
Figure S32. ¹ H-NMR of compound 4m	38
Figure S33. ¹³ C-NMR of compound 4m	39
Figure S34. ¹ H-NMR of compound 4n	40
Figure S35. ¹³ C-NMR of compound 4n	41
Figure S36. ¹ H-NMR of compound 40	42
Figure S37. ¹³ C-NMR of compound 40	43
IR Spectra	
Figure S38. IR spectrum of compound 2a	44
Figure S39. IR spectrum of compound 2b	45

Figure S40. IR spectrum of compound 2c	46
Figure S41. IR spectrum of compound 4a	47
Figure S42. IR spectrum of compound 4b	48
Figure S43. IR spectrum of compound 4c	49
Figure S44. IR spectrum of compound 4d	50
Figure S45. IR spectrum of compound 4e	51
Figure S46. IR spectrum of compound 4f	52
Figure S47. IR spectrum of compound 4g	53
Figure S48. IR spectrum of compound 4h	54
Figure S49. IR spectrum of compound 4i	55
Figure S50. IR spectrum of compound 4j	56
Figure S51. IR spectrum of compound 4k	57
Figure S52. IR spectrum of compound 4I	58
Figure S53. IR spectrum of compound 4m	59
Figure S54. IR spectrum of compound 4n	60
Figure S55. IR spectrum of compound 40	61
Mass Spectra	VI
Figure S56. Mass spectrum of compound 2a	62
Figure S57. Mass spectrum of compound 2b	63
Figure S58. Mass spectrum of compound 2c	64
Figure S58. Mass spectrum of compound 2c Figure S59. Mass spectrum of compound 4a	65
Figure S60. Mass spectrum of compound 4b	66
Figure S61. Mass spectrum of compound 40 Figure S61. Mass spectrum of compound 4c	67
Figure S62. Mass spectrum of compound 4d	68
Figure S63. Mass spectrum of compound 4e	69
Figure S63. Mass spectrum of compound 4e Figure S64. Mass spectrum of compound 4f	70
Figure S65. Mass spectrum of compound 4g	71
Figure S66. Mass spectrum of compound 4h	72
Figure S67. Mass spectrum of compound 4i	73
Figure S68. Mass spectrum of compound 4j	74
Figure S69. Mass spectrum of compound 4k	75
Figure S70. Mass spectrum of compound 41	76
Figure S71. Mass spectrum of compound 4m	77
Figure S72. Mass spectrum of compound 4n	78
Figure S73. Mass spectrum of compound 40	79
Molecular Docking Supplementary Figure	
Figure S74. Docking binding modes and overlay of 4e, sorafenib, and curcumin	80
Biology Supplementary Figures	
Figure S75. IC ₅₀ curves for all compounds on MCF-7 cell line	81
Figure S76. IC ₅₀ curves for all compounds on HepG-2 cell line	81
Figure S77. VEGFR2 Enzyme inhibition curves for compounds 4b and 4d-f	82
Nano Supplementary Figure	
Nano Supplementary Figure Figure S78. Elemental analysis of the synthesized iron oxide nanocomposite; where (a) EDX of Fe ₂ O ₃ NPs-B, and (b) EDX of Fe ₂ O ₃ NPs-HA.	83

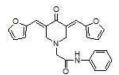


Figure S2. ¹H-NMR of compound 2a with D₂O·

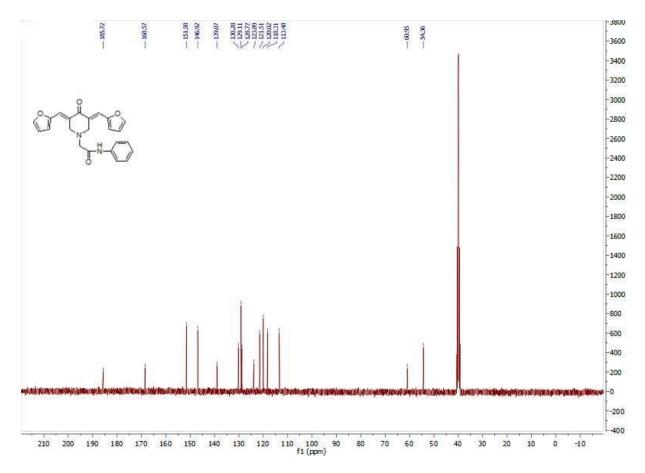


Figure S3. ¹³C-NMR of compound 2a.

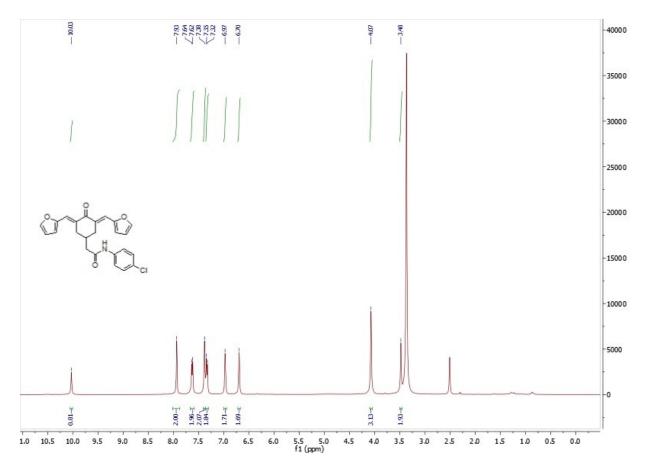


Figure S4. ¹H-NMR of compound 2b.

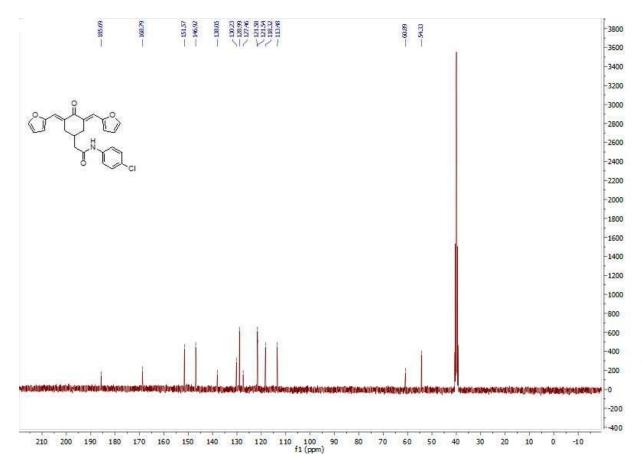


Figure S5. ¹³C-NMR of compound 2b.

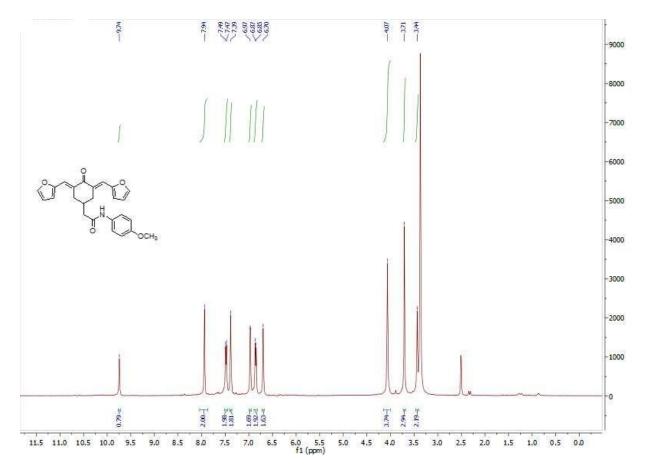


Figure S6. ¹H-NMR of compound 2c.

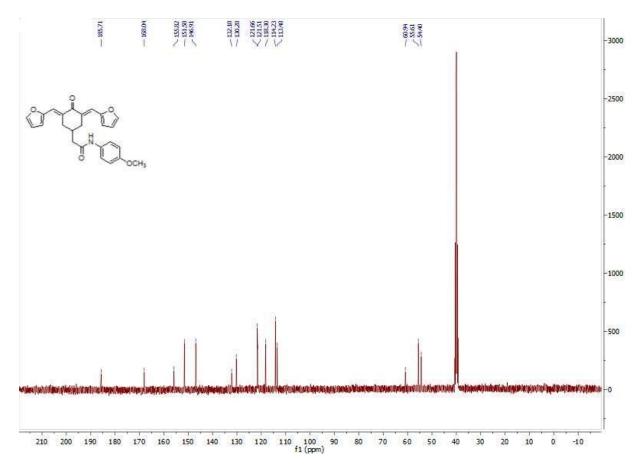


Figure S7. ¹³C-NMR of compound 2c.

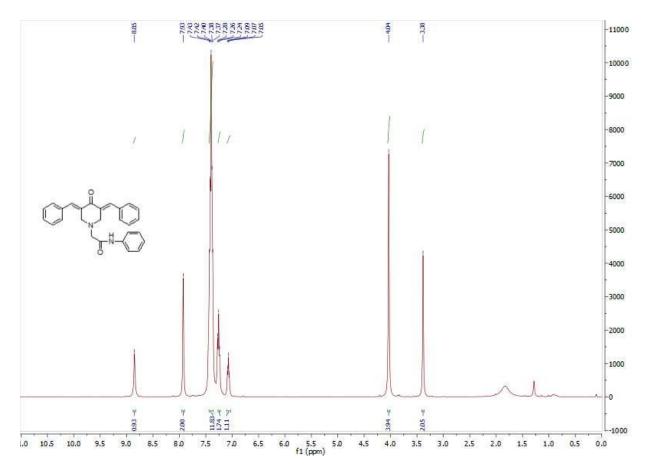


Figure S8. ¹H-NMR of compound 4a.

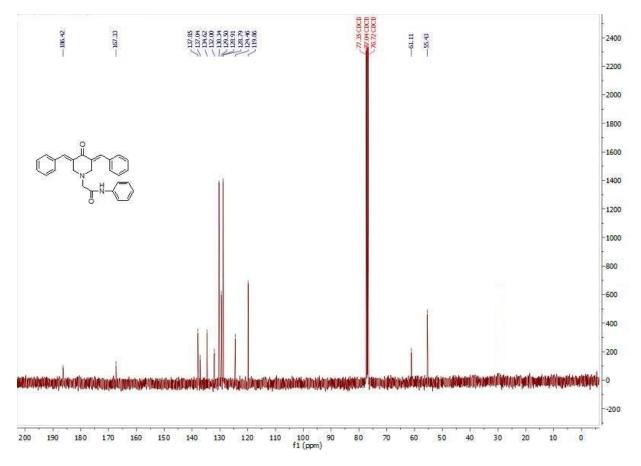


Figure S9. ¹³C-NMR of compound 4a.

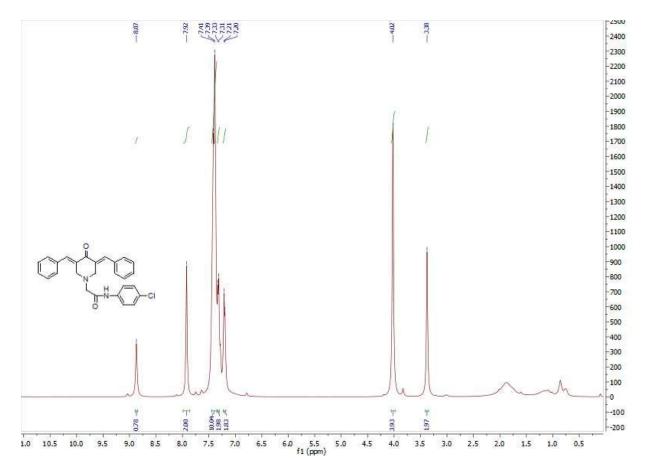


Figure S10. ¹H-NMR of compound 4b.

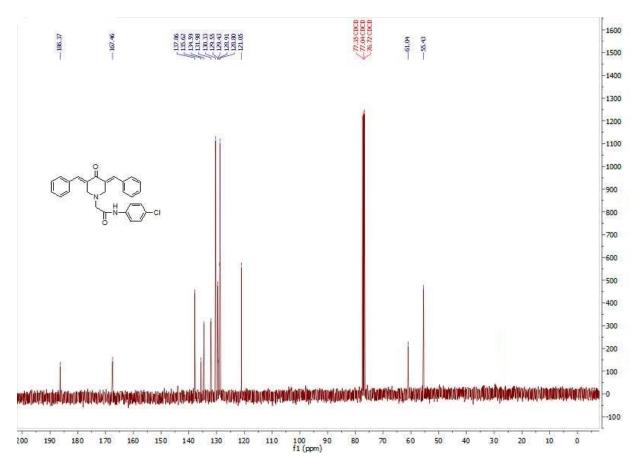


Figure S11. ¹³C-NMR of compound 4b.

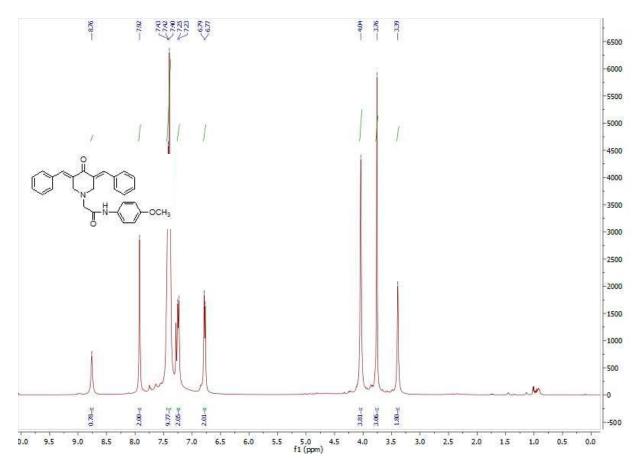


Figure S12. ¹H-NMR of compound 4c.

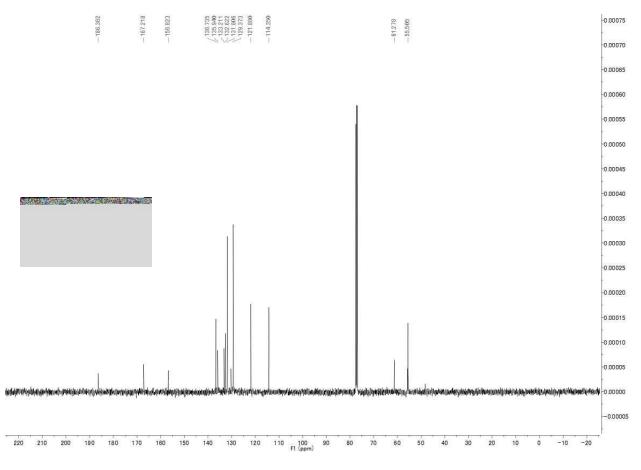


Figure S13. ¹³CNMR of compound 4c.

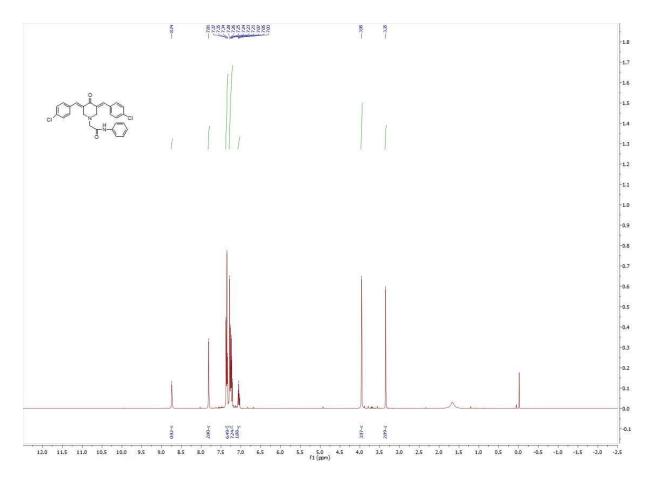


Figure S14. ¹H-NMR of compound 4d.

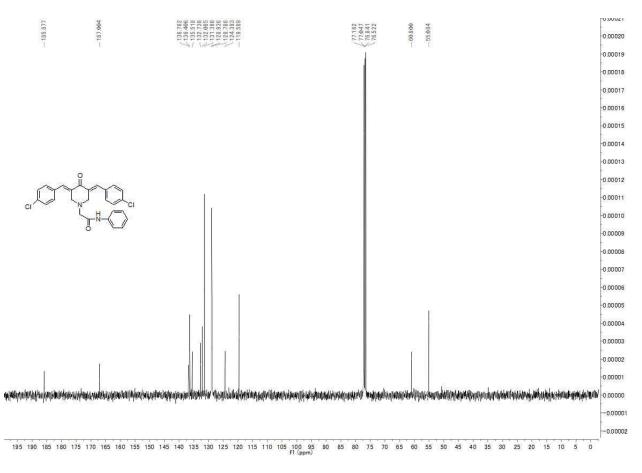


Figure S15. ¹³C-NMR of compound 4d.

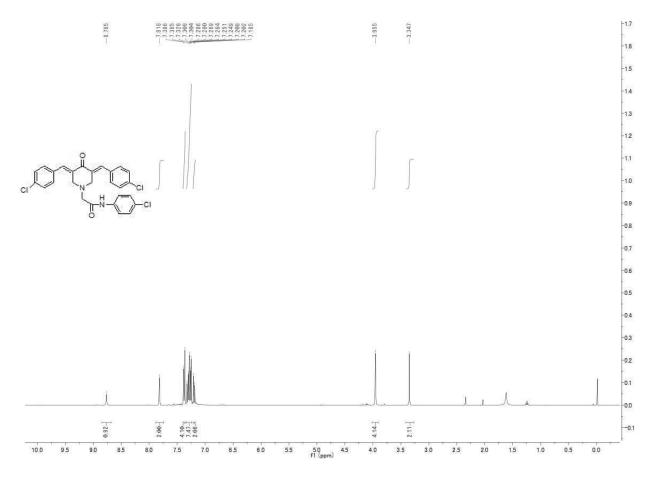


Figure S16. ¹H-NMR of compound 4e.

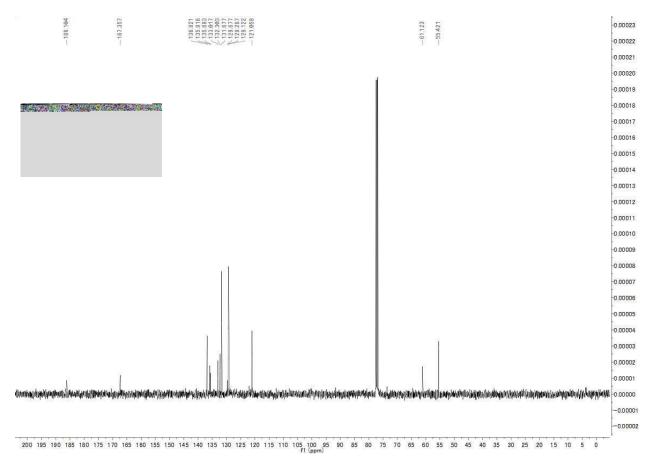


Figure S17. ¹³C-NMR of compound 4e.

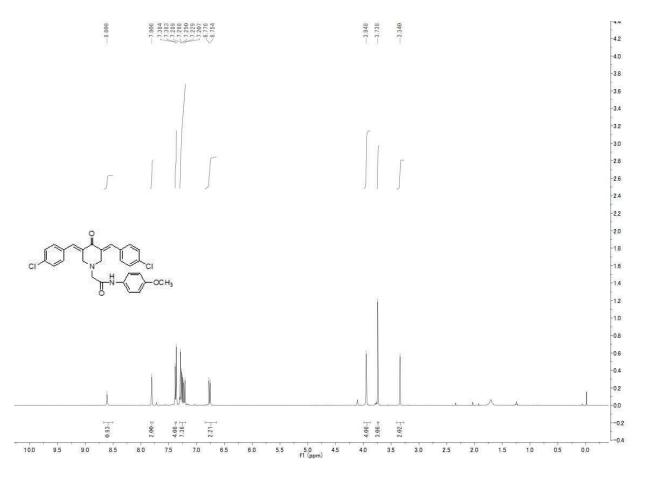


Figure S18. ¹H-NMR of compound 4f.



Figure S19. ¹³C-NMR of compound 4f.

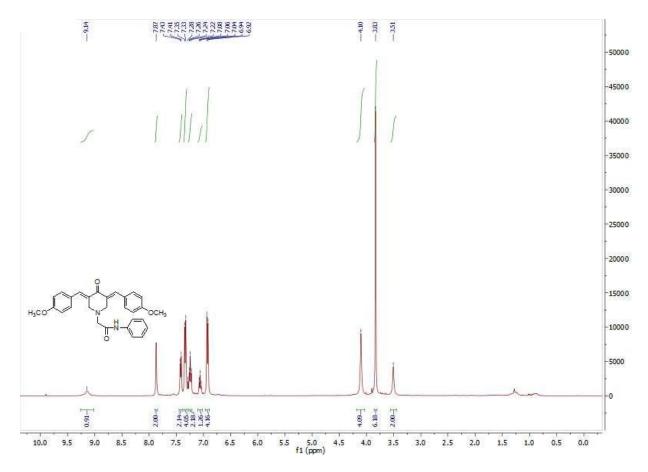


Figure S20. ¹H-NMR of compound 4g.

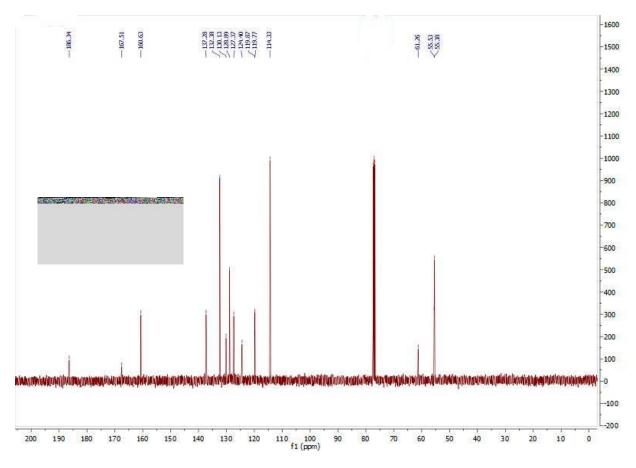


Figure S21. ¹³C-NMR of compound 4g.

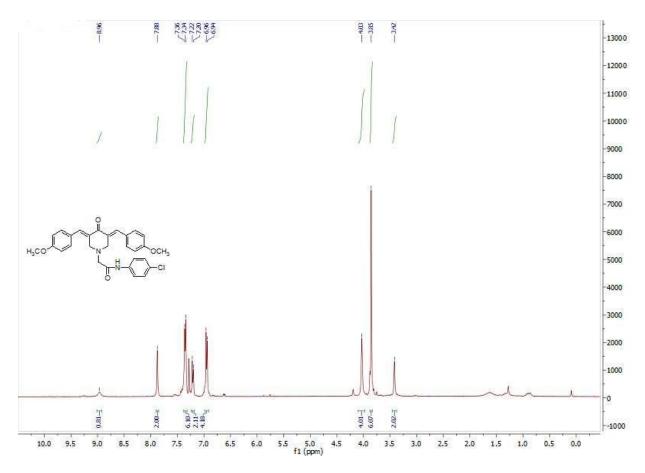


Figure S22. ¹H-NMR of compound 4h.

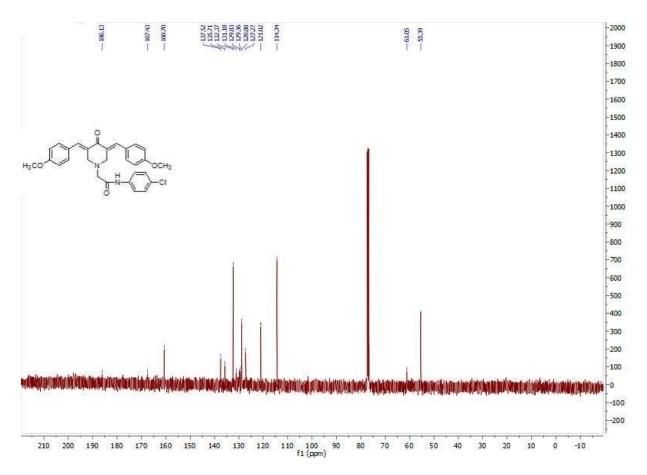


Figure S23. ¹³C-NMR of compound 4h.

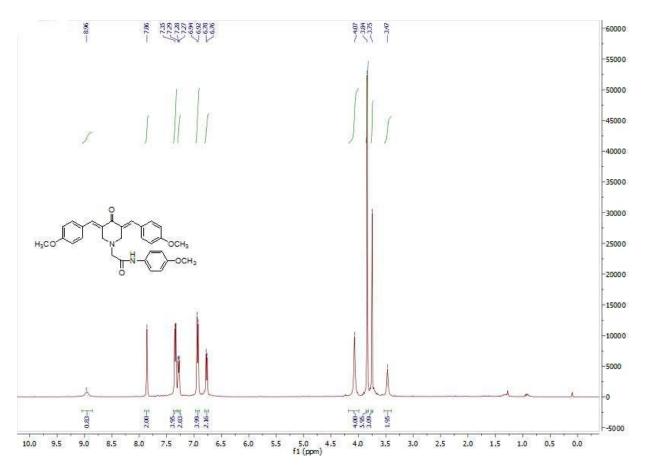


Figure S24. ¹H-NMR of compound 4i.

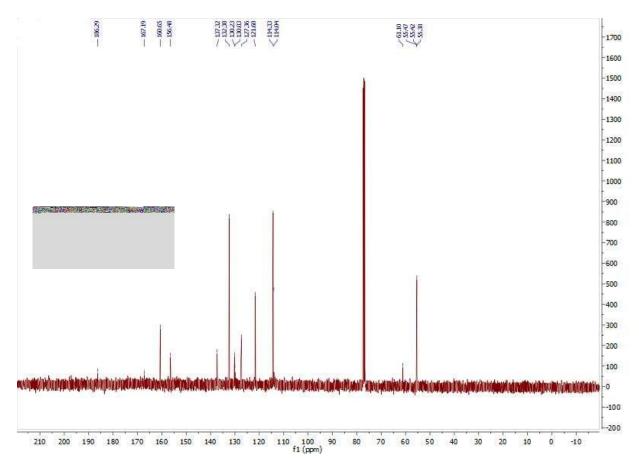
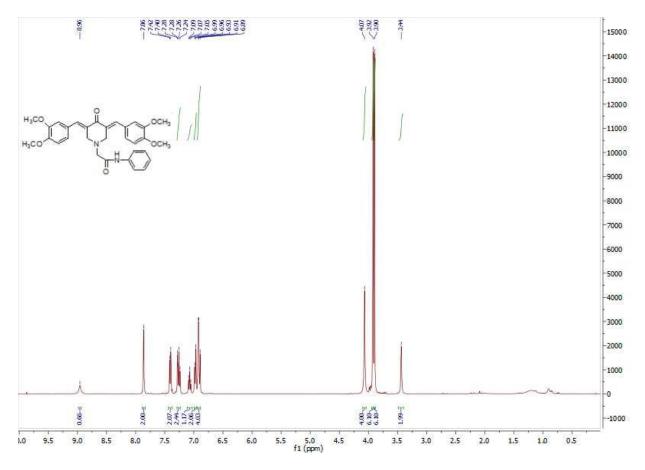
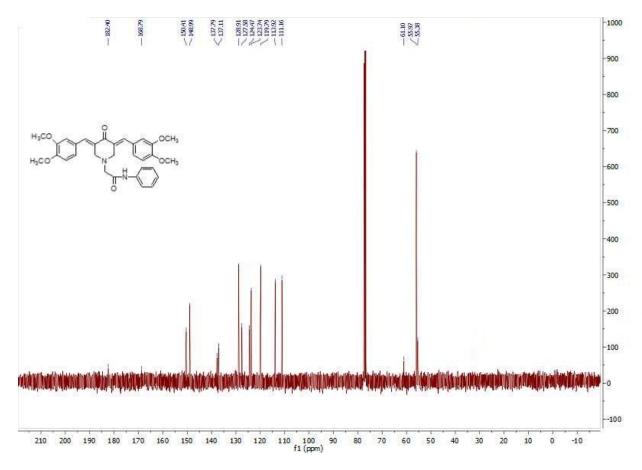




Figure S25. ¹³C-NMR of compound 4i.

FigureS26. ¹H-NMR of compound 4j.

FigureS27. ¹³C-NMR of compound 4j.

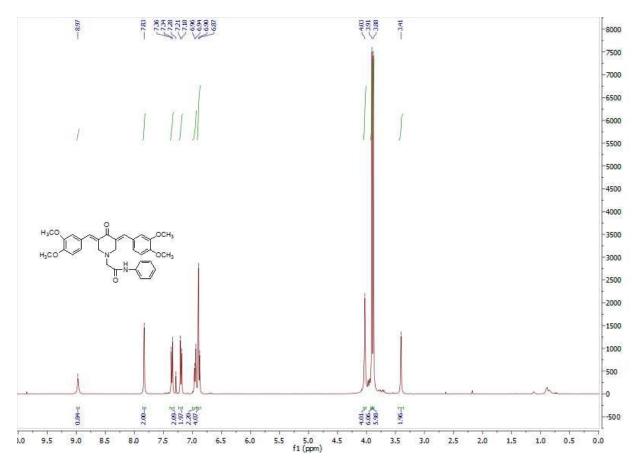


Figure S28. ¹H-NMR of compound 4k.

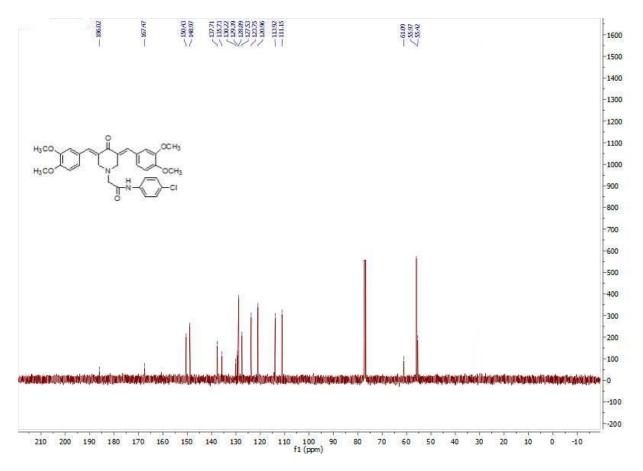


Figure S29. ¹³C-NMR of compound 4k.

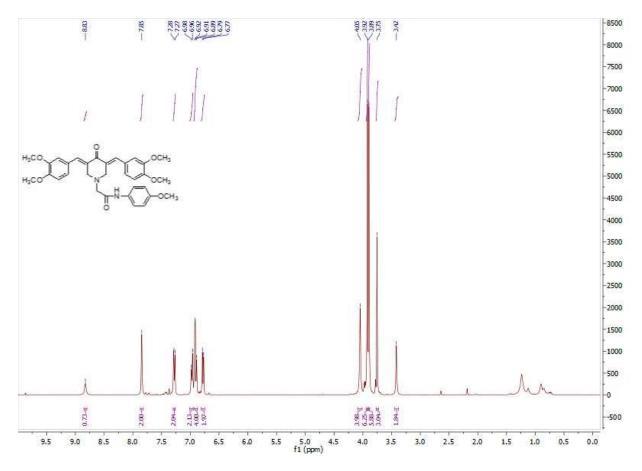


Figure S30. ¹H-NMR of compound 4l.

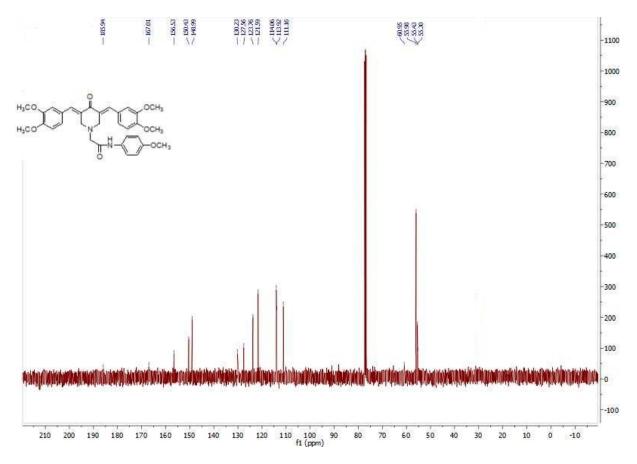


Figure S31. ¹³C-NMR of compound 4l.

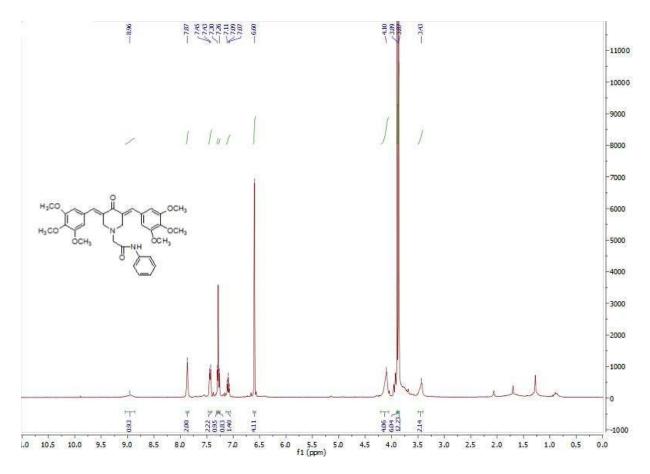


Figure S32. ¹H-NMR of compound 4m.

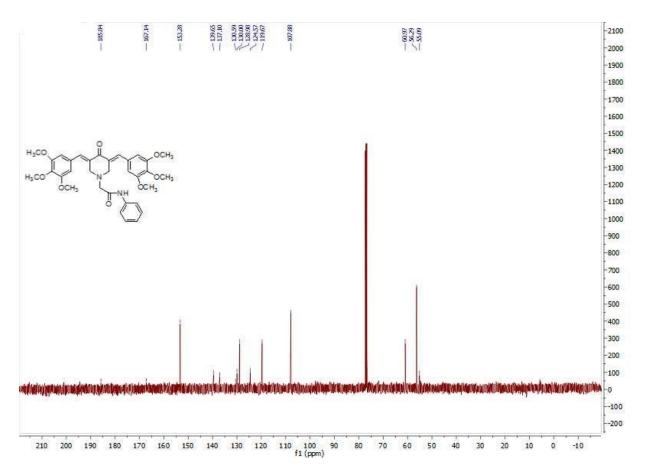


Figure S33. ¹³C-NMR of compound 4m.

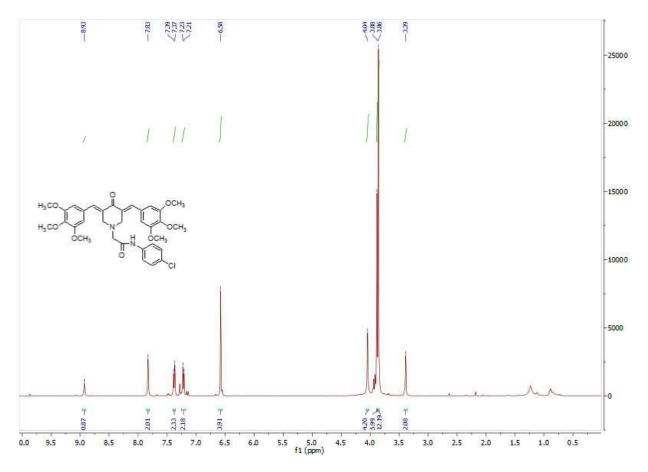


Figure S34. ¹H-NMR of compound 4n.

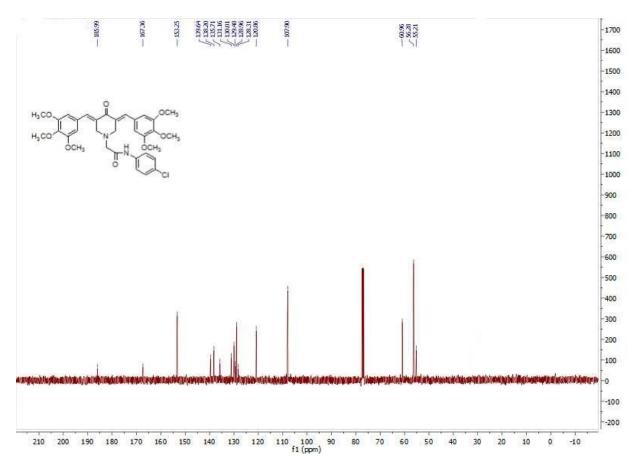


Figure S35. ¹³C-NMR of compound 4n.

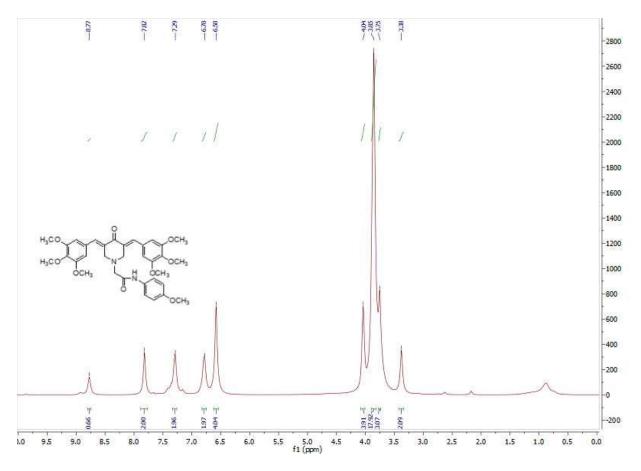


Figure S36. ¹H-NMR of compound 40.

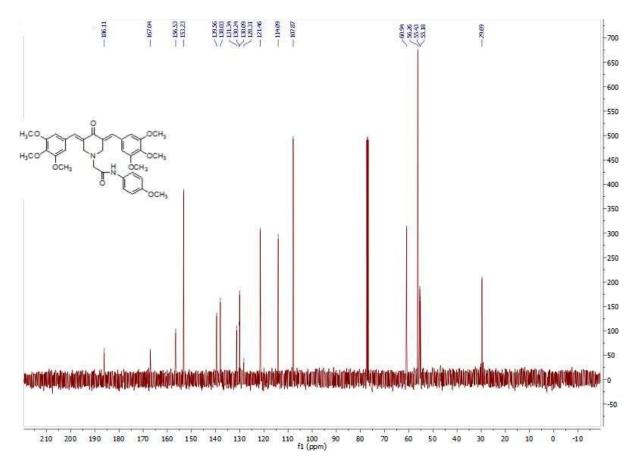


Figure S37. ¹H-NMR of compound 40.

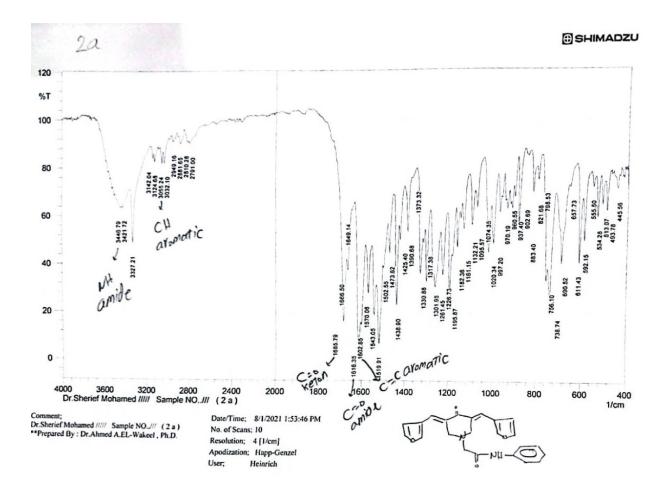


Figure S38. IR spectrum of compound 2a

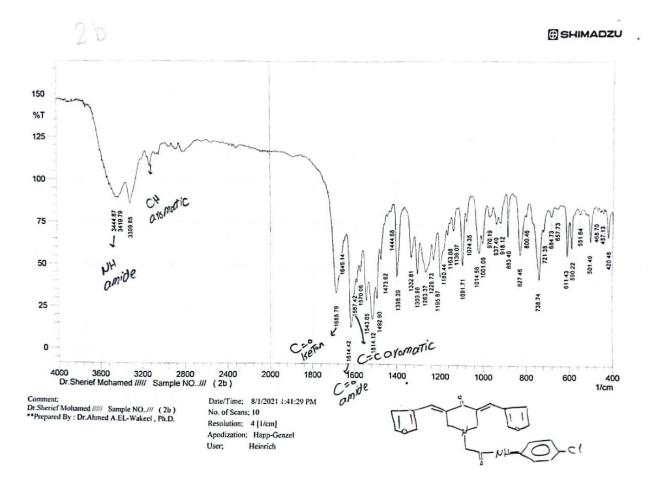


Figure S39. IR spectrum of compound 2b

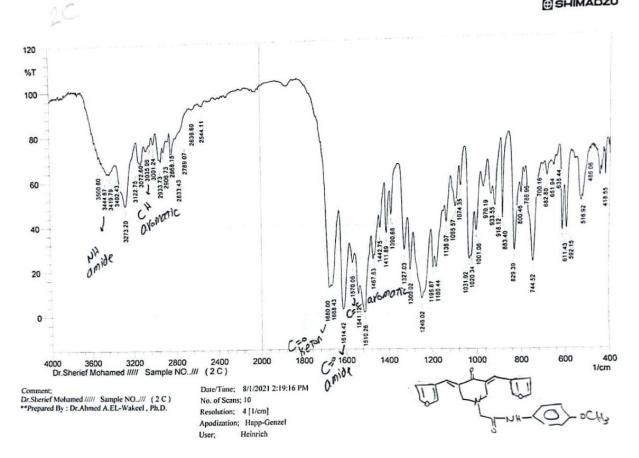


Figure S40. IR spectrum of compound 2C

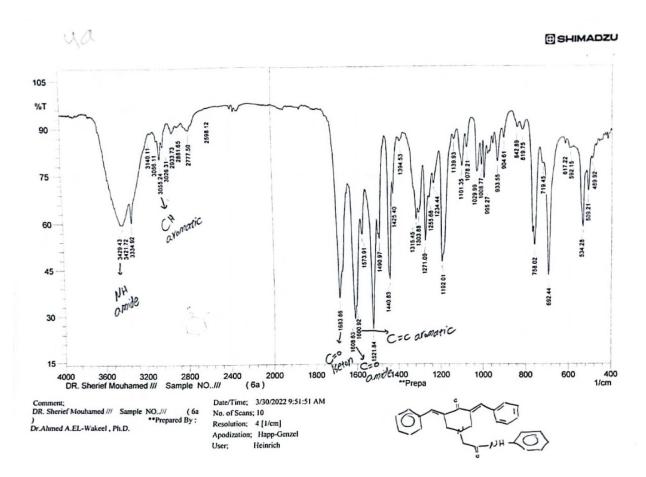


Figure S41. IR spectrum of compound 4a

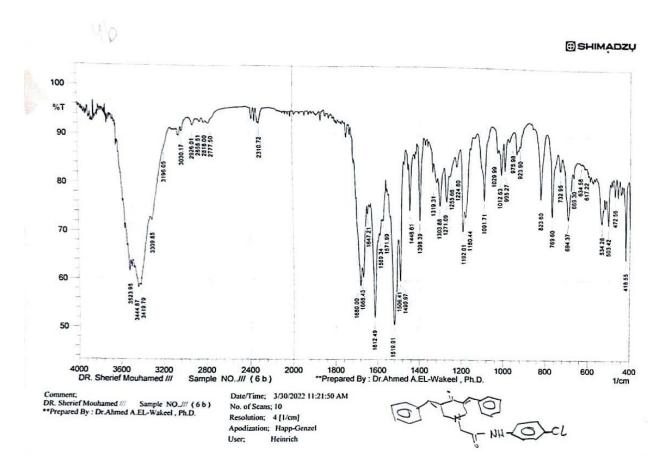


Figure S42. IR spectrum of compound 4b

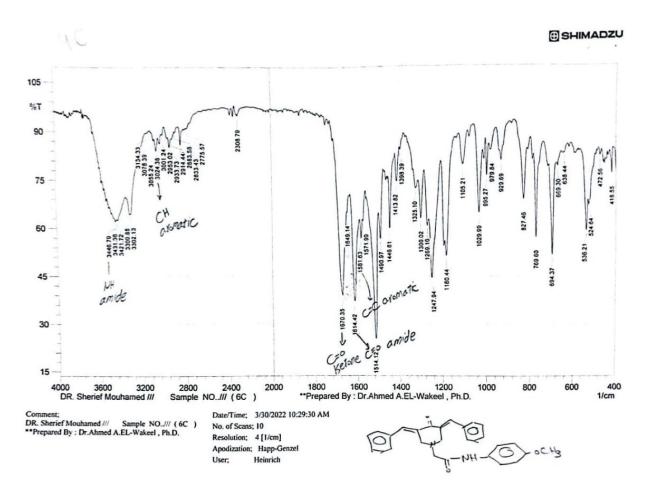


Figure S43. IR spectrum of compound 4C

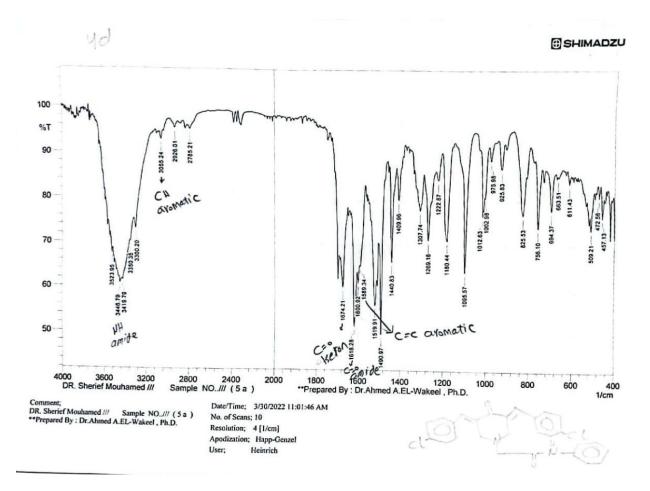


Figure S44. IR spectrum of compound 4d

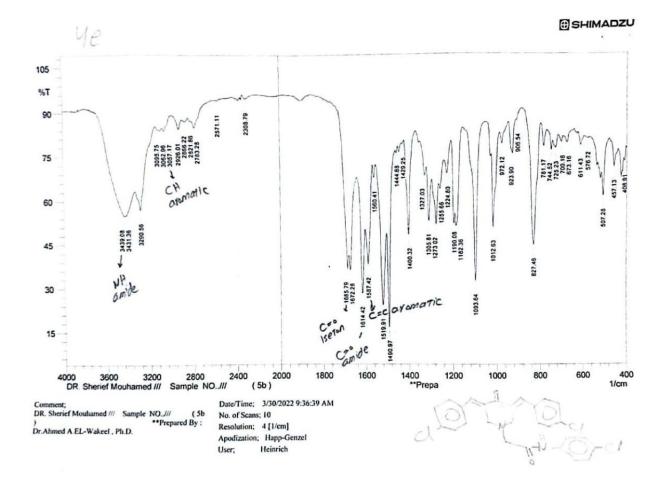


Figure S45. IR spectrum of compound 4e

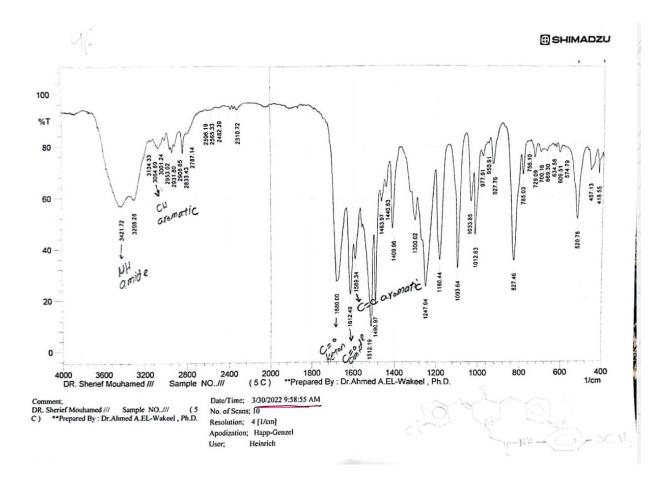


Figure S46. IR spectrum of compound 4f

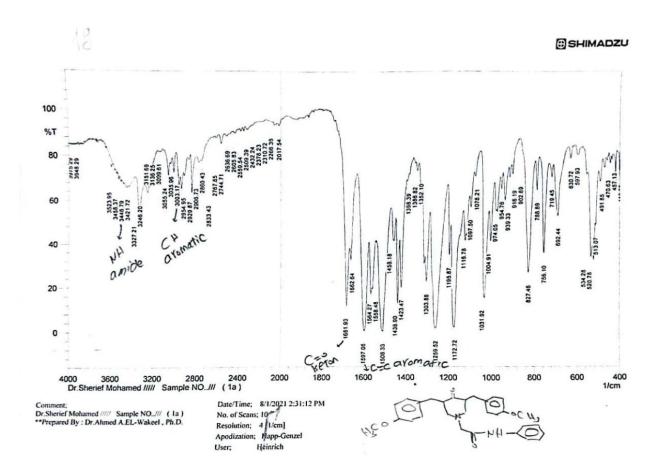


Figure S47. IR spectrum of compound 4g

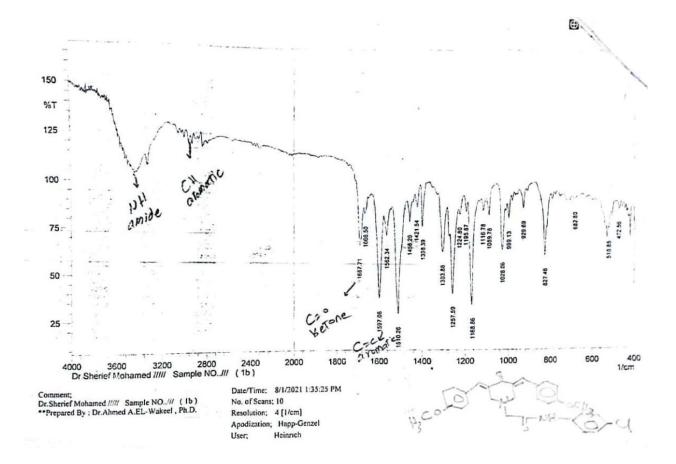


Figure S48. IR spectrum of compound 4h

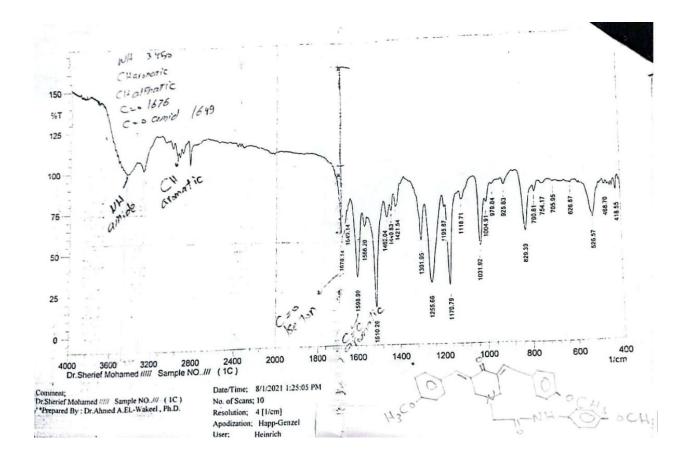


Figure S49. IR spectrum of compound 4i

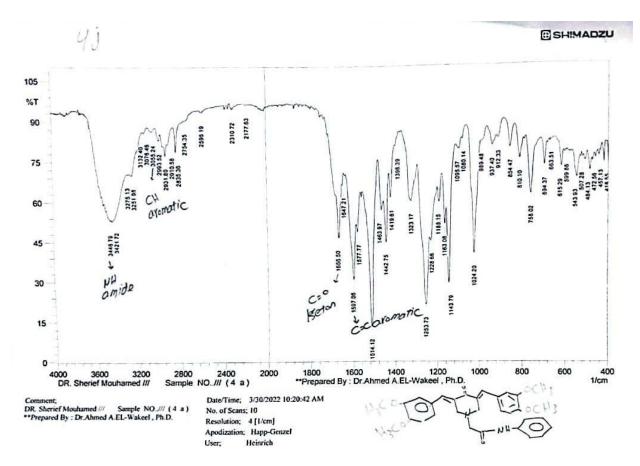


Figure S50. IR spectrum of compound 4j

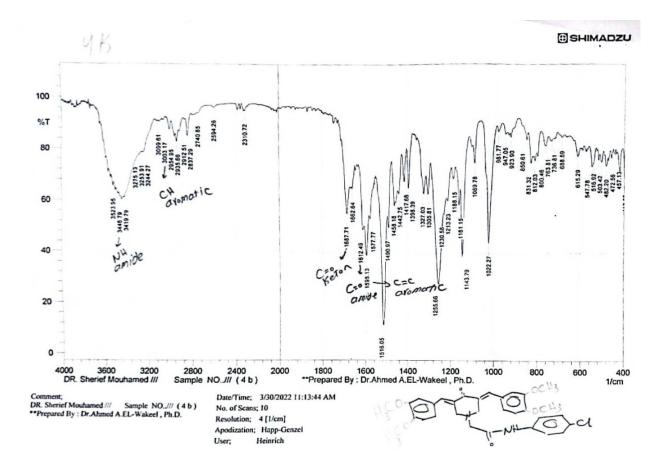


Figure S51. IR spectrum of compound 4k

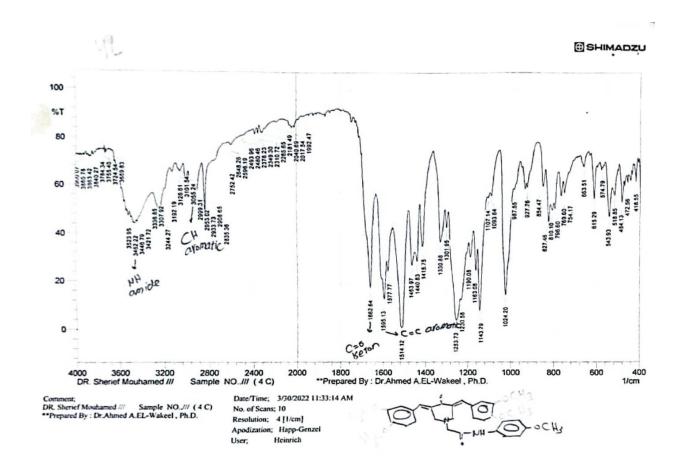


Figure S52. IR spectrum of compound 4L

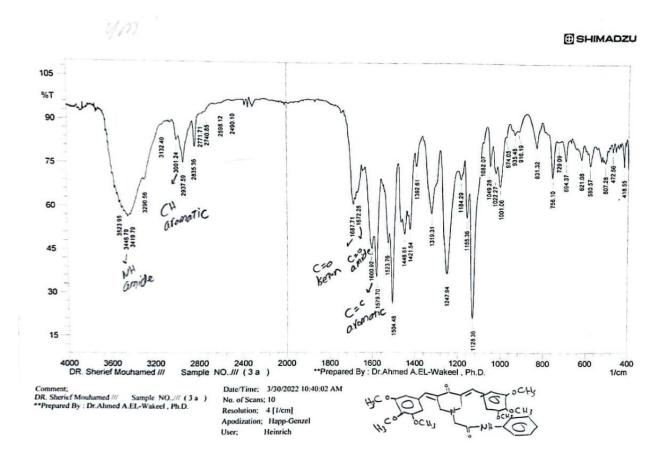


Figure S53. IR spectrum of compound 4m

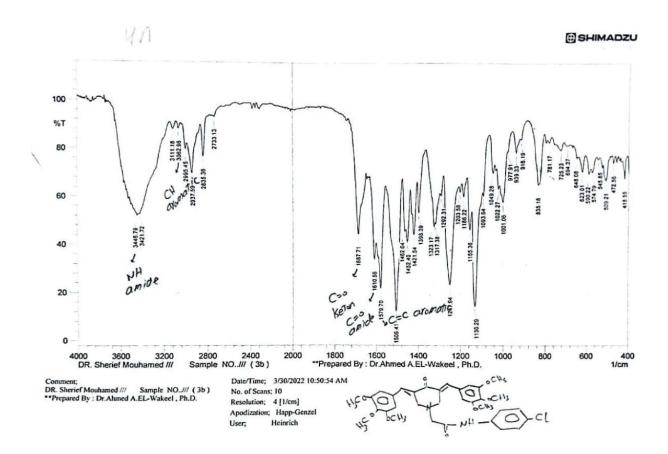


Figure S54. IR spectrum of compound 4n

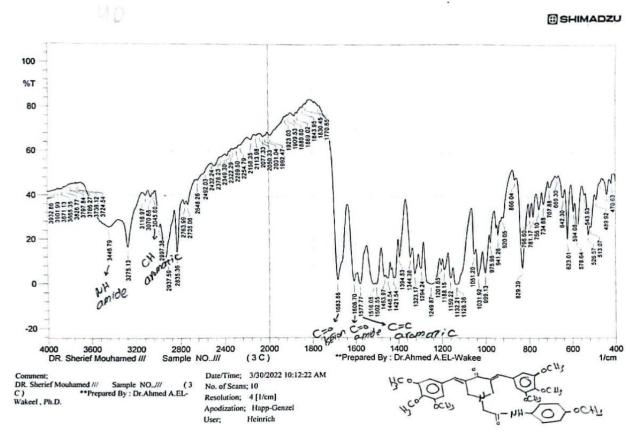


Figure S55. IR spectrum of compound 4o

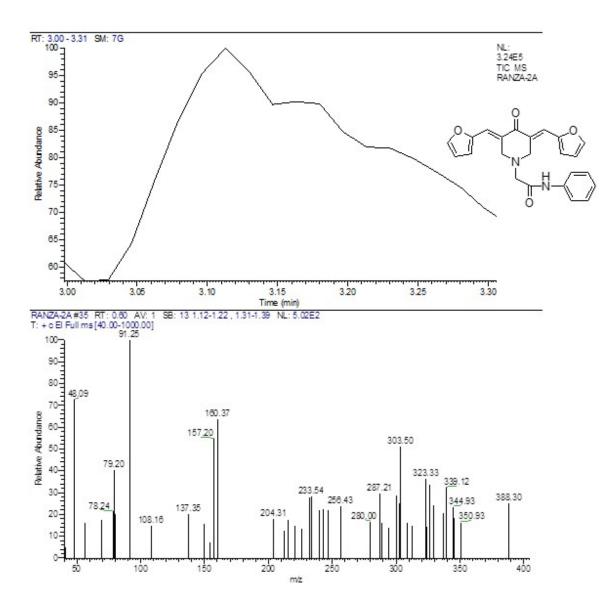


Figure S56. Mass spectrum of compound 2a

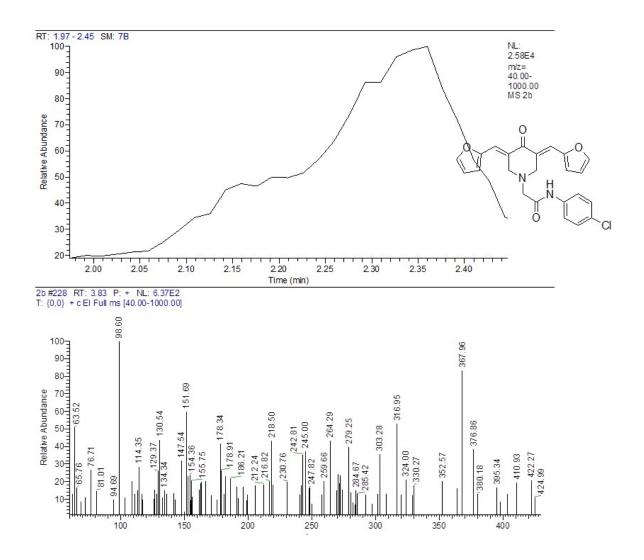


Figure S57. Mass spectrum of compound 2b

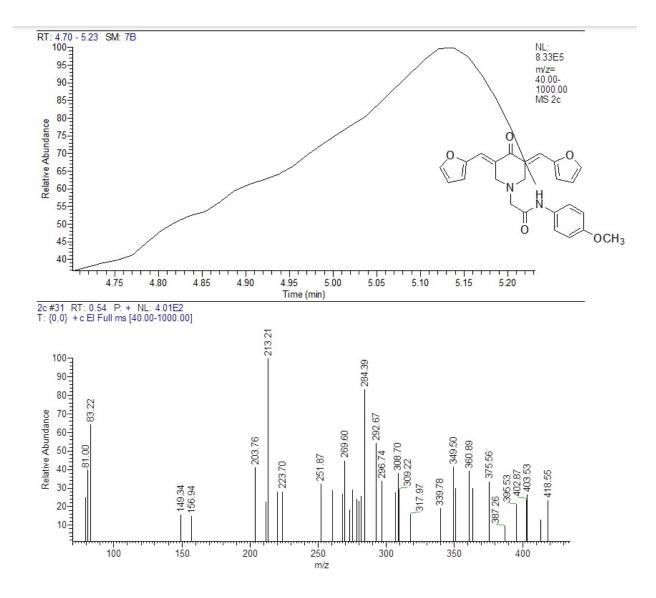


Figure S58. Mass spectrum of compound 2c

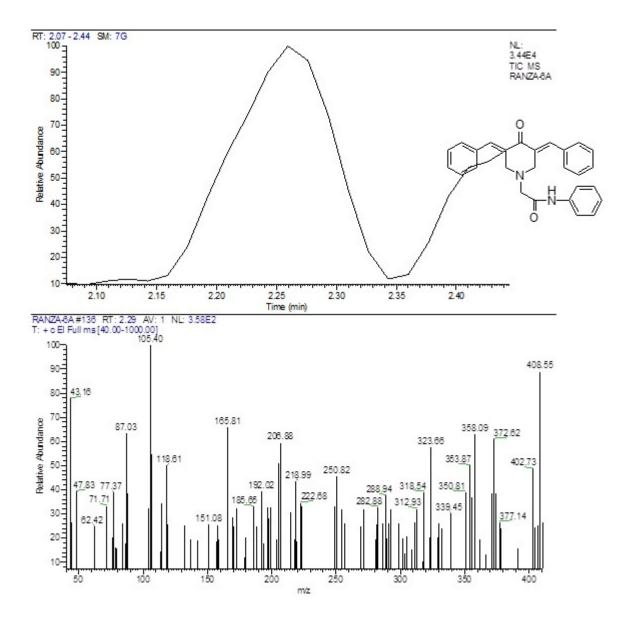


Figure S59. Mass spectrum of compound 4a

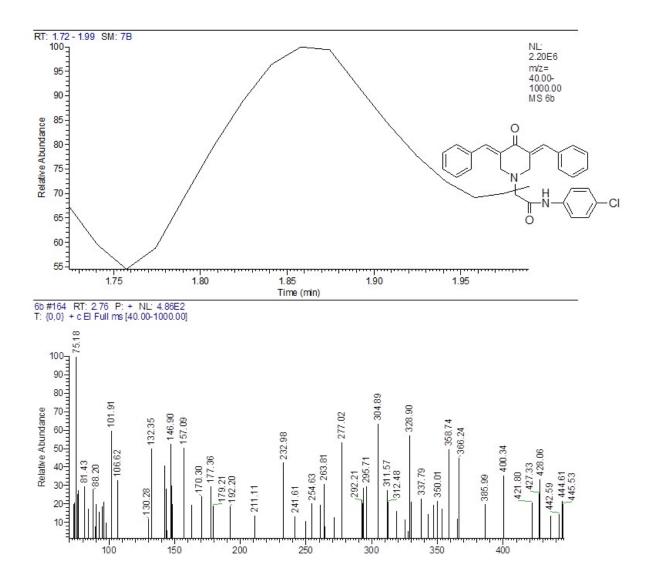


Figure S60. Mass spectrum of compound 4b

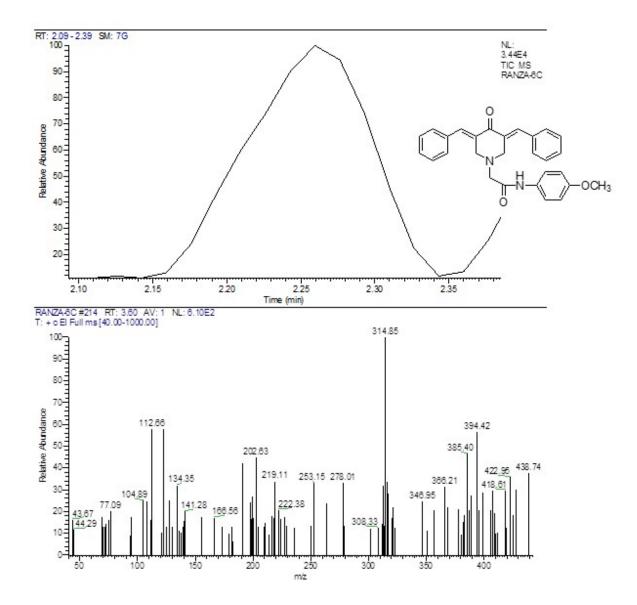


Figure S61. Mass spectrum of compound 4c

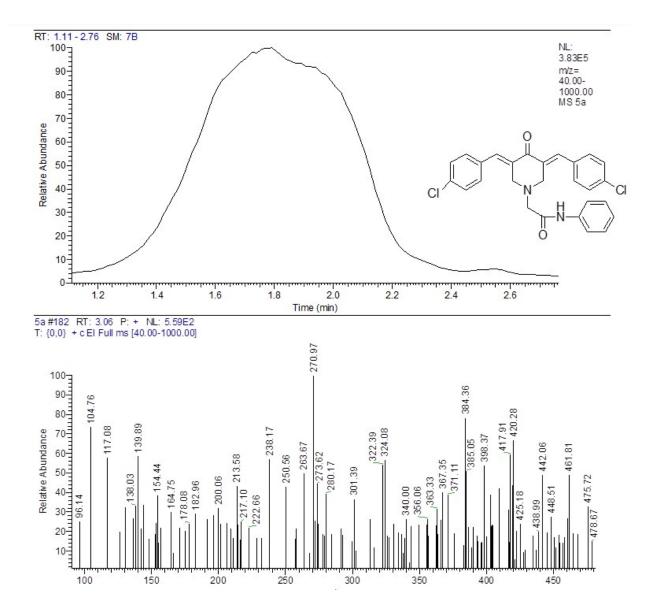


Figure S62. Mass spectrum of compound 4d

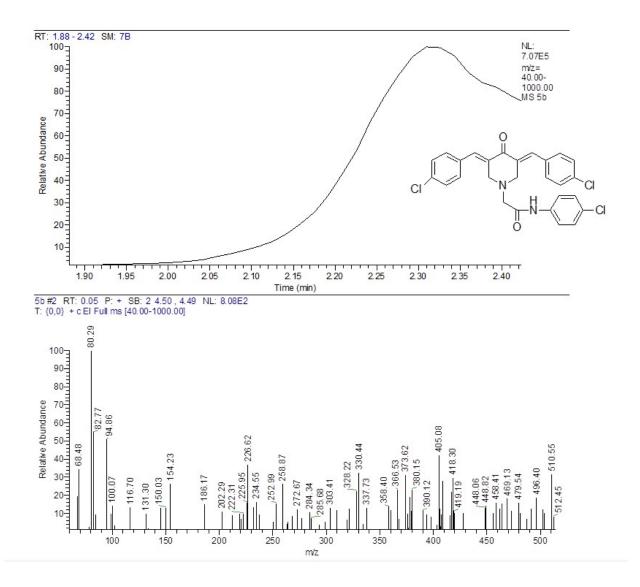


Figure S63. Mass spectrum of compound 4e

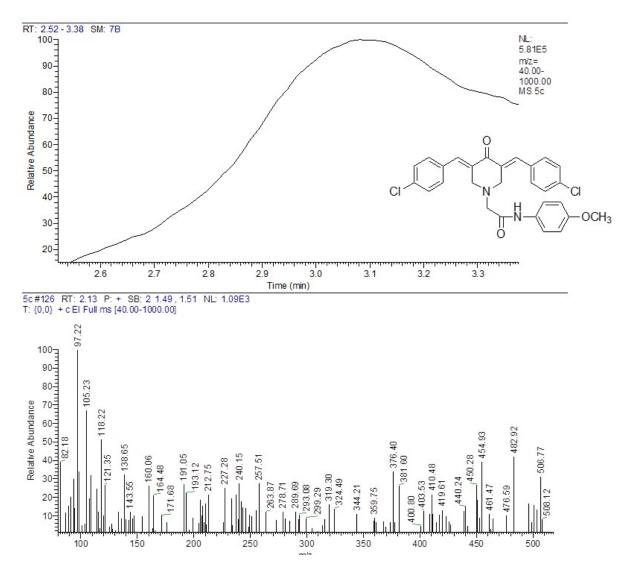


Figure S64. Mass spectrum of compound 4f

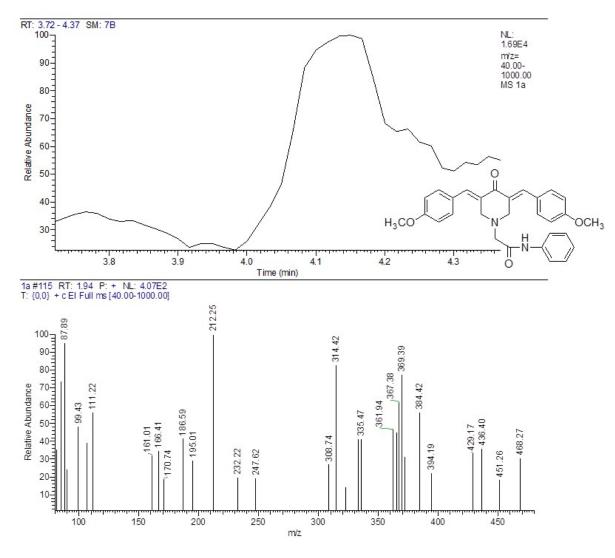


Figure S65. Mass spectrum of compound 4g

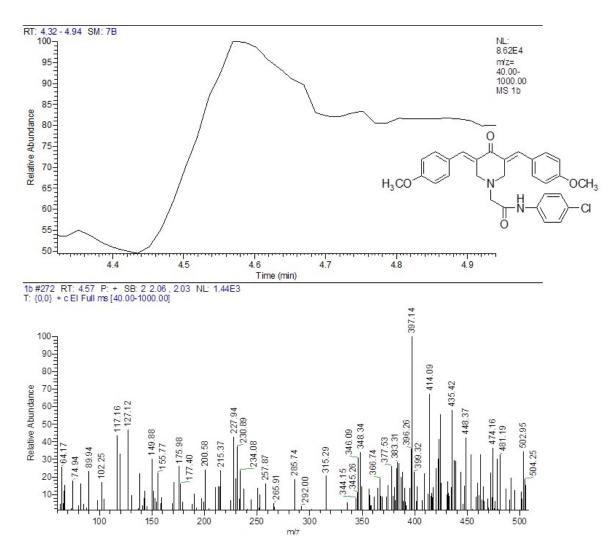


Figure S66. Mass spectrum of compound 4h

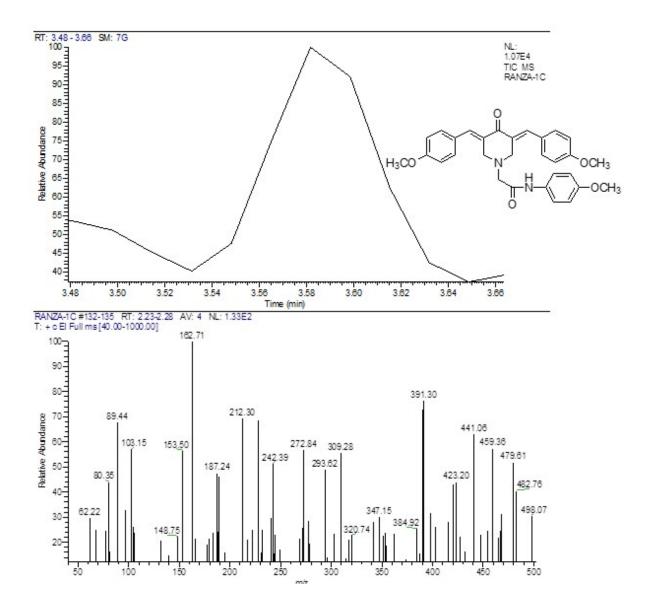
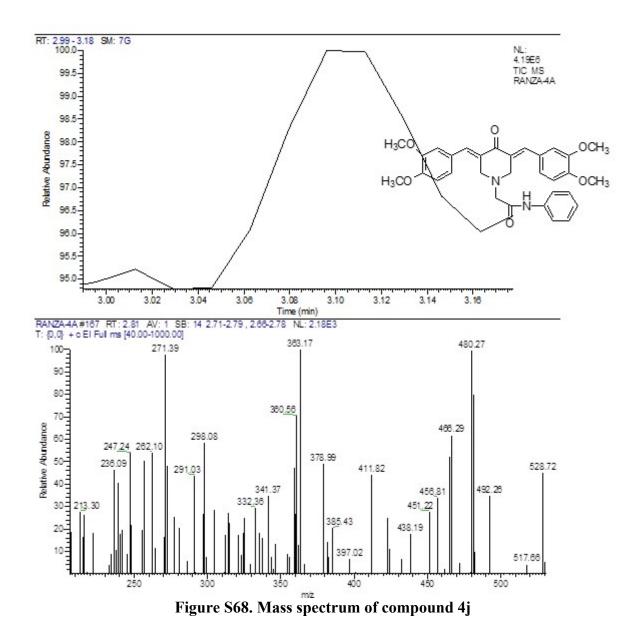



Figure S67. Mass spectrum of compound 4i

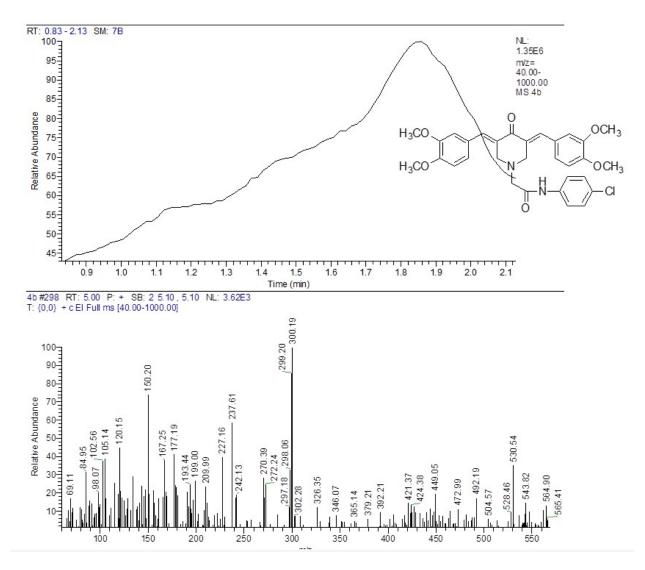


Figure S69. Mass spectrum of compound 4k

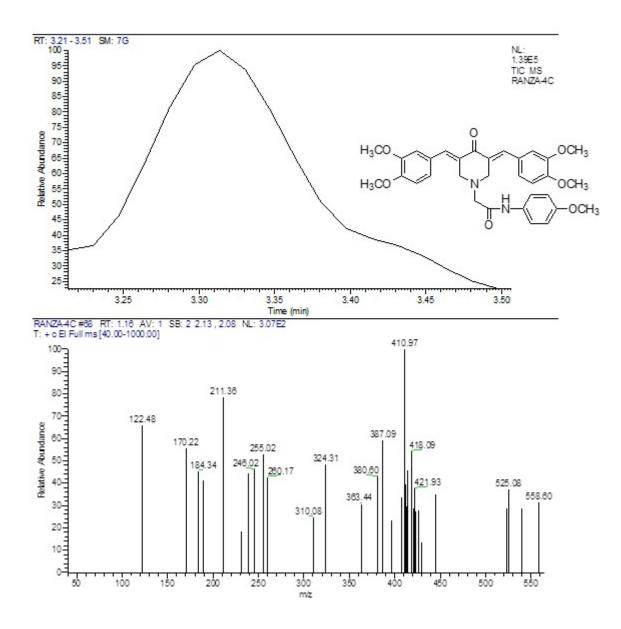


Figure S70. Mass spectrum of compound 41

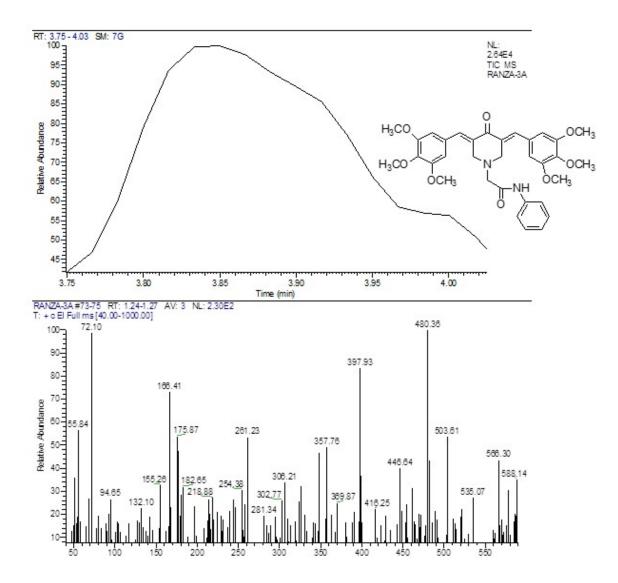
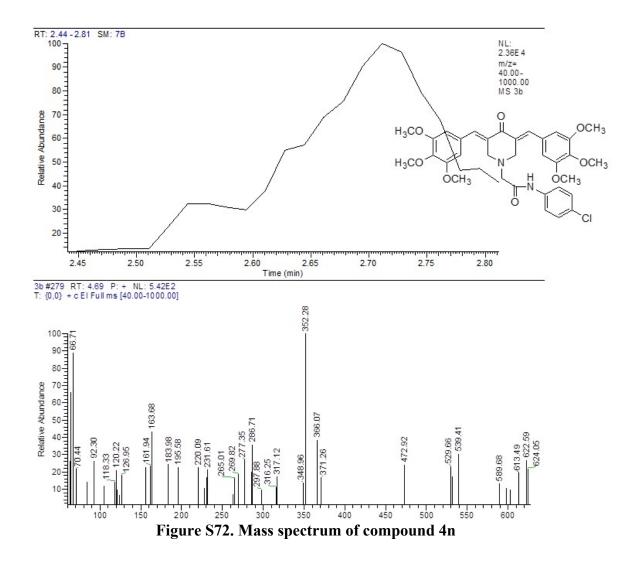



Figure S71. Mass spectrum of compound 4m

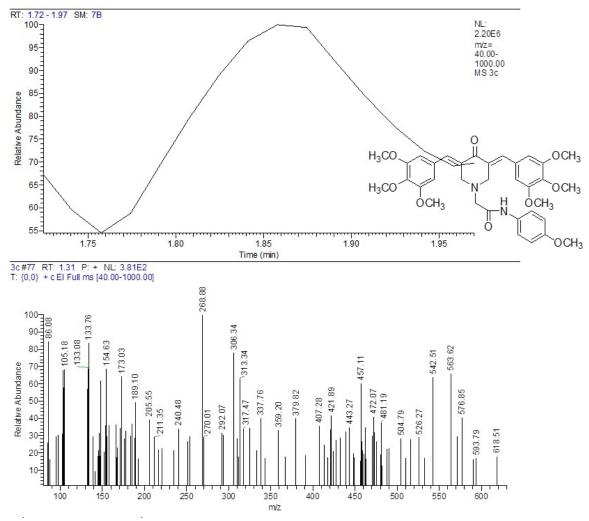
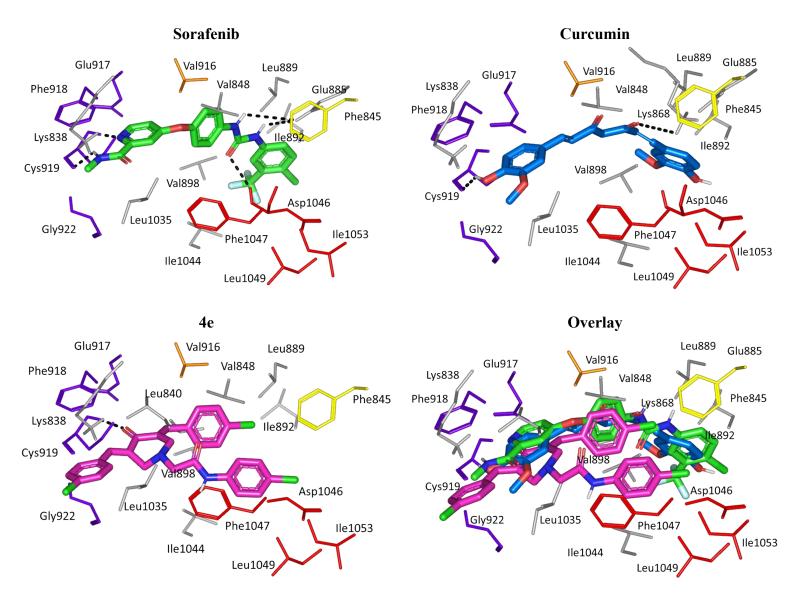



Figure S73. Mass spectrum of compound 40

Figure S74. Docked binding modes and interactions for top-docked compound, sorafenib, and curcumin parent compound within VEGFR2 ATP-binding site and kinase site. (A) Binding modes and overlay of docked 4e (magenta sticks), co-crystallized ligand (sorafenib; green sticks), and curcumin (blue sticks) at VEGFR2 inactive state (PDB; 2OH4). Residues (lines) within a radius of 5 Å from the bounded ligands are displayed, labelled with sequence number, and coloured in regard to their position at the structural loops; A-loop (red), hinge region (purple), catalytic loop (blue), and glycine-rich loop (yellow). Black dashed lines represent the depicted polar ligand-VEGFR2 interactions.

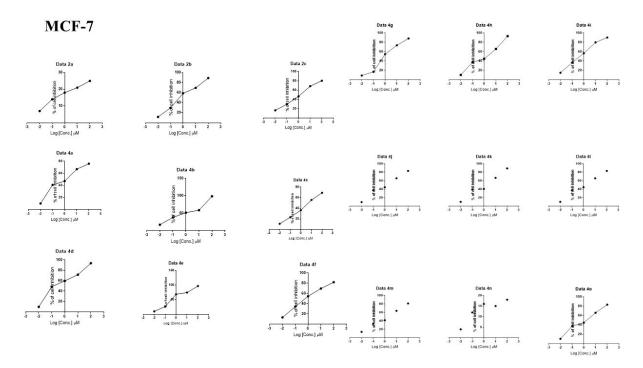


Figure S75. IC_{50} curves for all compounds on MCF-7 cell line.

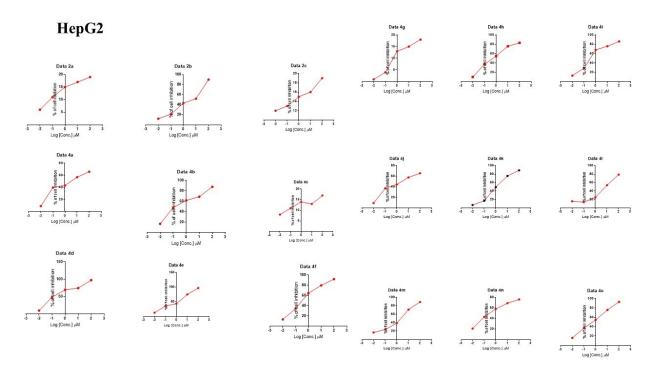


Figure S76. IC₅₀ curves for all compounds on HepG2 cell line.

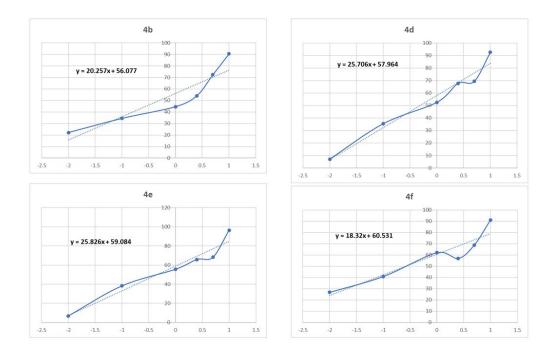
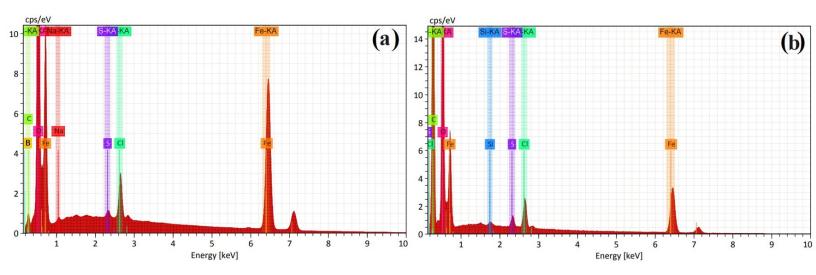



Figure S77. VEGFR2 Enzyme inhibition curves for compounds 4b and 4d-f.

VEGFR2

								b=29.7	ΔT=30 min								
	zyme inhbi	ition						nM	Compoun								
T=30 min									d [µM]	Cont.	10	5	2.5	1	0.1	0.01	
Compoun										0.651	0.015	0.202	0.215	0.248	0.401	0.559	
[µM]	Cont.	10	5	2.5	1	0.1	0.01		4e	0.642	0.024	0.21	0.217	0.304	0.399	0.6	
	0.651	0.012	0.19	0.289	0.358	0.446	0.493			0.628	0.029	0.199	0.225	0.301	0.386	0.63	IC50= 11.6 nM+0.
4b	0.642	0.084	0.17	0.297	0.341	0.416	0.48		Mean	0.640333	0.022667	0.203667	0.219	0.284333	0.395333		
	0.628	0.086	0.17	0.296	0.365	0.398	0.523	IC50= 27.5 nM±1.1	SD	0.01159	0.007095	0.005686	0.005292	0.031501	0.008145	0.035642	
/lean D	0.640333	0.060667			0.354667 0.012342	0.42	0.498667		% of	100	3.539823						
of alibility	100	9.474232	27,5898	45.91359	55.38782	65.59084	77.87611		valibility	0	96.46018	31.80635 68.19365					
6 of	0	90.52577	72.4102	54.08641	44.61218	34.40916	22.12389										5
6 of nhibition	0	90.52577	72.4102	54.08641	44.61218	34.40916	22.12389		ΔT=30 min								
6 of	0	90.52577	72.4102	54.08641	44.61218	34.40916	22.12389	1	Compoun								
of hibition T=30 min	O Cont.	90.52577	72.4102	2.5	44.61218	34.40916 0.1	0.01			Cont.	10	5	2.5	1	0.1	0.01	[
of hibition T=30 min ompoun									Compoun	Cont. 0.651	10 0.041	5	2.5 0.281	1 0.259	0.1 0.382	0.01 0.486	
of hibition T=30 min ompoun	Cont.	10	5	2.5	1	0.1	0.01		Compoun					-			
of <u>hhibition</u> T=30 min ompoun [µM]	Cont. 0.651	10 0.037	5 0.199	2.5 0.201	1 0.301	0.1 0.399	0.01	IC50= 19.8 nM±0.7	Compoun d [µM]	0.651	0.041	0.201	0.281	0.259	0.382	0.486 0.496	IC50= 21.9 nM±1.
of <u>hhibition</u> <u>T=30 min</u> ompoun [µM] 4d	Cont. 0.651 0.642	10 0.037 0.038 0.068	5 0.199 0.189	2.5 0.201 0.203 0.216	1 0.301 0.299 0.312	0.1 0.399 0.413 0.429	0.01 0.599 0.591	IC50= 19.8 nM±0.7	Compoun d [μM] 4f	0.651 0.642 0.628	0.041 0.019 0.114	0.201 0.199 0.198	0.281 0.279 0.267	0.259 0.261 0.208	0.382 0.379 0.374	0.486 0.496 0.423	IC50= 21.9 nM±1.
s of <u>nhibition</u> <u>T=30 min</u> ompoun [μM]	Cont. 0.651 0.642 0.628	10 0.037 0.038 0.068 0.047667	5 0.199 0.189 0.201	2.5 0.201 0.203 0.216 0.206667	1 0.301 0.299 0.312 0.304	0.1 0.399 0.413 0.429	0.01 0.599 0.591 0.596 0.595333	IC50= 19.8 nM±0.7	Compoun d [μM] 4f Mean	0.651 0.642 0.628 0.640333	0.041 0.019 0.114 0.058	0.201 0.199 0.198 0.199333	0.281 0.279 0.267 0.275667	0.259 0.261 0.208 0.242667	0.382 0.379 0.374 0.378333	0.486 0.496 0.423 0.468333	IC50= 21.9 nM±1.
of <u>nhibition</u> <u>T=30 min</u> ompoun (µM) 4d lean	Cont. 0.651 0.642 0.628 0.640333	10 0.037 0.038 0.068 0.047667	5 0.199 0.189 0.201 0.196333 0.006429	2.5 0.201 0.203 0.216 0.206667 0.008145	1 0.301 0.299 0.312 0.304 0.007	0.1 0.399 0.413 0.429 0.413667	0.01 0.599 0.591 0.596 0.595333 0.004041	IC50= 19.8 nM±0.7	Compoun d [μM] 4f	0.651 0.642 0.628 0.640333 0.01159	0.041 0.019 0.114 0.058	0.201 0.199 0.198 0.199333 0.001528	0.281 0.279 0.267 0.275667 0.007572	0.259 0.261 0.208 0.242667	0.382 0.379 0.374 0.378333 0.004041	0.486 0.496 0.423 0.468333 0.039577	

Figure S78. Elemental analysis of the synthesized iron oxide nanocomposite; where (a) EDX of Fe_2O_3 NPs-B, and (b) EDX of Fe_2O3 NPs-HA.