Supplementary Information

Synthesis and structure-activity study of the antimicrobial lipopeptide brevibacillin

Omar Fliss,^{a,b,c,‡} Louis-David Guay,^{a,c,d,‡} Ismail Fliss,^{b,c} Éric Biron^{a,c,d,*}

^aFaculté de Pharmacie, Université Laval and Laboratory of Medicinal Chemistry, Centre de recherche du CHU de Québec-Université Laval, Québec (QC), Canada

^bDépartement des sciences des aliments, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec (QC), Canada

^cResearch Center in Infectious Diseases and Institute of Nutrition and Functional Foods, Université Laval, Québec (QC), Canada

^dPROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Canada

[‡]Equally contributing authors

*Corresponding author: Eric.Biron@pha.ulaval.ca

TABLE OF CONTENTS

Material and equipment	S3
Synthesis of the N-terminal dipeptide	S3
Solid-phase peptide synthesis	S6
Figure S1. ¹ H NMR spectra of compounds 2-6 .	S9
Figure S2. ¹³ C NMR spectra of compounds 2-6 .	S14
Figure S3. HRMS (ESI-TOF) spectra of compounds 2-6 .	S19
Figure S4. HPLC profiles (λ = 220 nm) and ESI-MS spectra of synthesized peptides 1 , 7-20 .	S22
Figure S5. Hemolytic activity of compounds 1 , 7-20 at concentrations of 2, 4, 8, 16, 32, 64, 128, a 256 μg/mL.	and S27
Figure S6. Dose-response of compounds 1 , 7-20 at concentrations of 2, 4, 8, 16, 32, 64, 128, an 256 µg/mL on the viability of Caco-2 cells.	nd S28
Table S1. Chemical characterization of synthesized peptides.	S29
Table S2. Minimum bactericidal activity of the synthesized peptides 1 , 7-20 .	S30
Table S3. MBC/MIC ratio of the synthesized peptides 1, 7-20.	S31

MATERIAL AND EQUIPMENT

Reagents: All the chemical reagents and solvents were purchased from commercial sources (Sigma-Aldrich, Fisher, Combi-Block and Oakwood Chemical) and used without further purification, unless otherwise indicated. Coupling reagents and *N*-Fmoc-protected amino acids were purchased from Matrix Innovation (Québec City, QC, Canada). Wang resin was purchased from Chem-Impex (Wood Dale, IL). Reactions on solid support were performed in filter columns (2 and 10 mL) from Roland Vetter Laborbedarf OHG (Ammerbuch, Germany).

Equipment: Peptide synthesis was performed on a Prelude peptide synthesizer from Gyros Protein Technologies (Tucson, AZ).

Nuclear magnetic resonance (NMR) spectra were recorded using a Bruker Ascend 300 MHz spectrometer (Billerica, MA, USA). Chemical shifts are reported in parts per million downfield from TMS. The chemical shifts (d) are expressed in ppm and referenced to acetone (2.06 ppm, ¹H), chloroform (7.26 ppm, ¹H and 77.0 ppm, ¹³C), dimethylsulfoxide (2.50 ppm, ¹H) or methanol (3.33 ppm, ¹H). Splitting patterns are designated as s (singlet), d (doublet), dd (doublet of doublets), t (triplet), q (quartet), br (broad singlet) and m (multiplet).

HPLC and LC-MS analyses were conducted on a Shimadzu Prominence LCMS-2020 system equipped with an electro-spray ionization (ESI) probe using a Phenomenex Kinetex EVO C18 column (100 mm × 4.6 mm, 100 Å, 2.6 μ m) using 0.1%HCOOH/H₂O (A) and 0.1% HCOOH/CH₃CN (B), with a linear gradient from 10 to 90% (B) for 10.5 min at a rate of 1.4 mL/min and ultraviolet detection at 220 and 254 nm.

High resolution mass spectra (HRMS) were measured with an Agilent 6210 LC Time of Flight mass spectrometer in electrospray mode with Agilent HP-0921 as internal standard. Either protonated molecular ions $[M + nH]^{n+}$, sodium adducts $[M + Na]^+$ or ammonium adducts $[M + NH_4]^+$ were used for empirical formula confirmation.

SYNTHESIS OF THE N-TERMINAL DIPEPTIDE

Benzyl (2S,3S)-2-{[tert-butyl(dimethyl)silyl]oxy}-3-methylpentanoate (2). A solution of NaNO₂ (3.16 g, 45.74 mmol) in 20 mL H₂O was added dropwise to a solution of L-isoleucine (3.0 g, 22.87 mmol) in 20 mL H₂O and conc. H₂SO₄ (0.755 mL, 13.72 mmol) at 0°C. Afterward, the mixture was stirred at room temperature for 16 h and 20 mL of 1N aqueous HCl solution and 3.0 g of NaCl were added to the reaction. After complete dissolution, the aqueous solution was extracted with AcOEt (5 x 30 mL). The organic layer was dried over Na₂SO₄ and concentrated in vacuo to give 2.72 g of isoleucic acid as a white waxy solid which was used in the next step without further purification.

Isoleucic acid (2.72 g, 20.66 mmol) was dissolved in 60 mL DMF and 3 mL H₂O at 0°C followed by the addition of 1.1 equiv of K_2CO_3 (3.14 g, 22.73 mmol) and 1.05 equiv of BnBr (2.59 mL, 21.69 mmol). The mixture was stirred at room temperature for 16 h followed by quenching of the reaction by adding 1 g of K_2CO_3 , 5 mL of MeOH and 50 mL H₂O. After stirring for 30 min, the solution was extracted with AcOEt (3 x 50 mL) and the organic phase washed with H₂O (50 mL), brine (50 mL) to be dried over Na₂SO₄ and concentrated in vacuo to give the benzyl ester as a yellow oil which was used in the next step without any further purification.

The benzyl ester was dissolved in CH₂Cl₂ (42 mL) and 2.4 equiv of imidazole (3.38 g, 49,58 mmol) and 1.2 equiv of TBSCI (3.74 g, 24.79 mmol) were added to the solution at 0°C. The mixture was stirred at room temperature for 16 h and the reaction quenched with the addition of 100 mL of sat. NH₄Cl solution. The solution was extracted with CH₂Cl₂ (3 x 50mL) followed by washing with brine (1 x 50 mL), drying over Na₂SO₄, and solvent removal under reduced pressure. The product was purified by flash column chromatography (SiO₂, 0 to 5% AcOEt/Hex; R_f = 0.50 in 5% AcOEt/Hex) to afford 6.22 g (78% over 3 steps) of **2** as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 0.04 (s, 3H), 0.05 (s, 3H), 0.87 (t, J = 7.4 Hz, 3H), 0.94 (d, J = 7.0 Hz, 3H overlapping s, 9H), 1.12 – 1.31 (m, 1H), 1.40 – 1.60 (m, 1H), 1.78 – 1.93 (m, 1H), 4.09 (d, J = 5.0 Hz, 1H), 5.18 (dd, J = 19.0, 12.3 Hz, 2H), 7.30 – 7.45 (m, 5H). ¹³C NMR (76 MHz, CDCl₃) δ -5.4, -4.9, 11.5, 15.5, 18.3, 24.0, 25.7, 26.0, 39.5, 66.3, 76.6, 128.3, 128.5, 135.8, 173.4. HRMS (ESI+): *m/z* [M+H]⁺ calcd for C₁₉H₃₃O₃Si : 337.2193, found 337.2199 The preparation and characterization of this compound has been previously reported.¹

(2S,3S)-2-{[tert-butyl(dimethyl)silyl]oxy}-3-methylpentanoic acid (3). To a stirred solution of 2 (6.22 g, 18.48 mmol) in 37 mL of dry THF was added 0.622 g of 10% Pd/C (10 wt%). The atmosphere of the flask was purged with hydrogen and the mixture was stirred at room temperature for 4 h. The mixture was filtered on a pad of celite 545® and the solvent of the filtrate evaporated. The product was purified by flash column chromatography (SiO₂, 5% to 20% AcOEt/Hex; R_f = 0.1 in 5% AcOEt/Hex + 0.1% AcOH) to afford 4.16 g (91% yield) of acid **3** as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 0.10 (s, 6H), 0.89 (t, J = 7.3 Hz, 3H), 0.93 (s, 9H), 0.95 (d, J = 6.9 Hz, 3H), 1.17 – 1.38 (m, 1H), 1.41 – 1.61 (m, 1H), 1.73 – 1.91 (m, 1H), 4.13 (d, J = 4.0 Hz, 1H), 8.88 (br, 1H). ¹³C NMR (76 MHz, CDCl₃) δ -5.2, -5.0, 11.7, 15.1, 18.1, 24.1, 25.7, 39.8, 76.2, 175.8. HRMS (ESI+): *m/z* [M+H]⁺ calcd for C₁₂H₂₇O₃Si : 247.1724, found 247.1726. The preparation and characterization of this compound has been previously reported.¹

Methyl N-[(2S,3S)-2-{[tert-butyl(dimethyl)silyl]oxy}-3-methylpentanoyl]-L-threoninate (4). The O-protected isoleucic acid **3** (0.87 g, 3.54 mmol) and H-L-Thr-OMe (HCl) (0.66 g, 3.89 mmol) were dissolved in 8 mL of DMF and the solution cooled to 0°C. Then, 1.1 equiv of HATU (1.48 g, 3.89 mmol) and 3 equiv of NMM (1.42 mL, 10.62 mmol) were successively added and the resulting mixture stirred at room temperature for 16 h. The reaction was quenched by adding 50 mL of sat. NaHCO₃ solution and the mixture stirred for 10 min. After extraction with EtOAc (3 x 25 mL), the organic phase was washed with water (50 mL), brine (50 mL) and dried over Na₂SO₄. The solvent was removed under reduced pressure and the crude purified by flash column chromatography (SiO₂, 25% to 35% AcOEt/Hex, R_f = 0.25 in 25% AcOEt/Hex) to afford 0.99 g (78% yield) of dipeptide **4** as off-white shards. ¹H NMR (300 MHz, CDCl₃) δ 0.11 (s, 6H), 0.90 (t, J = 7.4 Hz, 3H), 0.96 (d, J = 7.0 Hz, 3H overlapping s, 9H), 1.21 (d, J = 6.5 Hz, 3H), 1.15 – 1.36 (m, 1H), 1.42 – 1.61 (m, 1H), 1.74 – 1.90 (m, 1H), 2.49 (br, 1H), 3.75 (s, 3H), 4.09 (d, J = 3.4 Hz, 1H), 4.35 (qd, J = 6.4, 2.5 Hz, 1H), 4.55 (dd, J = 9.0, 2.5 Hz, 1H), 7.31 (d, J = 8.8 Hz, 1H). ¹³C NMR (76 MHz, CDCl₃) δ -5.3, -4.9, 11.9, 15.4, 18.0, 20.0, 24.0, 25.7, 39.8, 52.3, 56.7, 67.8, 77.4, 171.2, 173.7. HRMS (ESI+): *m/z* [M+H]⁺ calcd for C₁₇H₃₆NO₅Si : 362.2357, found 362.2364.

Methyl (2Z)-2-{[(2S,3S)-2-{[tert-butyl(dimethyl)silyl]oxy}-3-methylpentanoyl]amino}but-2enoate (5). To a stirred solution of dipeptide 4 (0.97 g, 2.68 mmol) in 27 mL of CH₂Cl₂ was added 7 equiv of EDAC·HCI (3.6 g, 18.76 mmol) and 3 equiv of CuCI (0.79 g, 8.04 mmol). After stirring the mixture for 16 h at room temperature, the solvent was removed under reduced pressure and the product purified by flash column chromatography (SiO₂, 10% to 20% AcOEt/Hex, R_f = 0.7 in 25% AcOEt/Hex) to afford 0.81 g (87% yield) of **5** as a colorless oil that solidified upon freezing. ¹H NMR (300 MHz, CDCl₃) δ 0.12 (s, 6H), 0.91 (t, J = 7.4 Hz, 3H), 0.96 (s, 9H), 0.99 (d, J = 7.1 Hz, 3H), 1.16 – 1.35 (m, 1H), 1.49 – 1.65 (m, 1H), 1.77 (d, J = 7.2 Hz, 3H), 1.74 – 1.87 (m, 1H), 3.75 (s, 3H), 4.12 (d, J = 3.6 Hz, 1H), 6.80 (q, J = 7.2 Hz, 1H), 7.92 (s, 1H). ¹³C NMR (76 MHz, CDCl₃) δ -5.2, -4.9, 12.0, 14.9, 15.3, 18.0, 24.0, 25.7, 40.3, 52.1, 77.6, 125.5, 133.3, 133.5, 164.7, 171.1. HRMS (ESI+): *m*/z [M+H]⁺ calcd for C₁₇H₃₄NO₄Si : 344.2252, found 344.2257.

(2Z)-2-{[(2S,3S)-2-{[tert-butyl(dimethyl)sily]oxy}-3-methylpentanoyl]amino}but-2-enoic acid (6). Dipeptide **5** (0.42 g, 1.23 mmol) was dissolved in THF (4 mL) and MeOH (1.4 mL) followed by the addition of 1N NaOH aqueous solution (1.36 mL, 1.36 mmol). The mixture was stirred until complete transformation of the starting material (typically 3 h). After completion, 25 mL of 1N HCl was poured in the flask and the mixture stirred for 5 min before extraction with EtOAc (3 x 20 mL). The organic phase was washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The product was purified by flash column chromatography (SiO₂, 10% to 25% AcOEt/Hex, R_f = 0.3 in 25% AcOEt/Hex + 0.1% AcOH) to afford 0.29 g (72% yield) of **6** as an off-white waxy solid. ¹H NMR (300 MHz, CDCl₃) δ 0.13 (s, 3H), 0.14 (s, 3H), 0.92 (t, J = 7.4 Hz, 3H), 0.97 (s, 9H), 0.99 (d, J = 6.9 Hz, 3H), 1.20 - 1.38 (m, 1H), 1.49 - 1.69 (m, 1H), 1.83 (d, J = 7.3 Hz, 3H), 1.78 - 1.89 (m, 1H), 4.16 (d, J = 3.6 Hz, 1H), 6.97 (q, J = 7.2 Hz, 1H), 8.00 (s, 1H), 10.94 (s, 1H). ¹³C NMR (76 MHz, CDCl₃) δ -5.2, -4.9, 12.0, 15.3, 15.3, 18.0, 24.0, 25.8, 40.3, 77.5, 125.1, 135.8, 169.2, 171.6. HRMS (ESI+): *m/z* [M+H]⁺ calcd for C₁₆H₃₂NO₄Si : 330.2095, found 330.2097.

SOLID-PHASE PEPTIDE SYNTHESIS

Preparation of the Fmoc-valinol-Wang resin:² Wang resin (1.09 mmol/g) was first swelled in CH_2CI_2 for 15 min by mechanical stirring followed by addition of trichloroacetonitrile (15 equiv). After cooling to 0°C, DBU (0.7 equiv) was added over a period of 5 min and the mixture stirred for 40 min at 0°C. The resin was then filtered in a peptide synthesis glass vessel and washed successively with DCM (3 × 30 s), DMSO (3 × 30 s), THF (3 × 30 s) and DCM (3 × 30 s). The resulting trichloroacetimidate resin (TCA-Wang resin) can be dried and stored at this point.

The TCA-Wang resin (1.09 mmol/g) was swelled in CH_2Cl_2 for 15 min followed by washing with dry THF (5 × 30 s). In a separate flask, Fmoc-L-Valinol (2.5 equiv) was dissolved in dry THF and the solution transferred to the resin. Afterward, BF₃·OEt₂ (0.5 equiv) was added to the resin and the mixture stirred at room temperature for 60 min. MeOH (10% the volume of THF) was then added to the resin and stirring continued for another 15 min. The resin was filtered and washed successively with THF (3 × 30 s), DCM (3 × 30 s) and MeOH (3 × 30 s). The resin was dried in vacuo before the loading capacity determined by the Fmoc dosage assay described by Gude et *al*. and evaluated to 0.49 mmol/g.²

General solid-phase peptide synthesis procedure: Peptides were prepared by standard solid-phase peptide synthesis (SPPS) using the Fmoc/tBu strategy on preloaded Fmoc-Valinol-Wang resin. Briefly, the Fmoc protecting group was removed from the resin by treatments with 20 % piperidine in DMF (v/v) (2 x 7 min) and amino acid couplings were performed with Fmoc-Xaa-OH (3 equiv), HATU (3 equiv) and NMM (6 equiv) in DMF (2 × 20 min).

Dipeptide 6 conjugation: The peptides were synthesized up to the L-leucine (position 2) residue on the automatic peptide synthesizer and the terminal Fmoc was removed by treating the resin with a solution of 20% piperidine/DMF (2×7 min). The resin (~100 mg, 0.049 mmol) was then washed with DMF (5×30 s) and transferred in a 5 mL glass vial equipped with a pressure relief septum. In a separate flask, 5 equiv of dipeptide **6** (0.081 g, 0.245 mmol) and 5 equiv of HOAt (0.033 g, 0.245 mmol) were dissolved in 2 mL of DMF. After addition of DIC (0.038 mL, 0.245 mmol, 5 equiv), the solution was added to the resin and the mixture was left without stirring for 16 h at 40 °C. After completion, the resin was filtered and washed with DMF (5×30 s).

Peptide cleavage and side chain deprotection: The resin (0.049 mmol) was washed with DCM (5 x 30 s) and treated with 6 mL of a deprotection solution of TFA/TIS/H₂O (95:2.5:2.5) for 90 min. After filtration of the resin, the filtrate was evaporated under reduced pressure and the peptide precipitated with cold Et₂O (45 mL). The precipitate was washed twice with diethyl ether and dried under vacuum.

The peptides were purified by semi-preparative RP-HPLC with a Shimadzu Prominence system on a Phenomenex Kinetex EVO C18 column (250 mm × 21.2 mm, 300 Å, 5µm) using 0.1%TFA/H₂O (A) and 0.1% TFA/CH₃CN (B), with a linear gradient from 10 to 60% (B) for 20 min at a rate of 12 mL/min and ultraviolet detection at 220 and 254 nm. The collected fractions containing the peptide with >95% purity were lyophilized to afford the desired peptide as a white powder.

Brevibacillin (1): White powder, 14% isolated yield (13.8 mg). RP-HPLC t_{R} = 8.93 min. HRMS (ESI-TOF) *m/z* calcd for C₈₀H₁₄₂N₁₆O₁₆: [M+H]⁺ 1584.0862, [M+2H]²⁺ 792.5468; found 1584.0914, 792.5457

Brevibacillin Val5 (**7**): White powder, 20% isolated yield (19.6 mg). RP-HPLC t_{R} = 8.89 min. HRMS (ESI-TOF) *m*/*z* calcd for C₇₉H₁₄₀N₁₆O₁₆: [M+H]⁺ 1570.0706, [M+2H]²⁺ 785.5389; found 1570.0749, 785.5363.

Brevibacillin Val4,5 (8): White powder, 21% isolated yield (21.2 mg). RP-HPLC t_R = 8.66 min. HRMS (ESI-TOF) *m*/*z* calcd for C₇₈H₁₃₈N₁₆O₁₆: [M+H]⁺ 1556.0549, [M+2H]²⁺ 778.5311; found 1556.0604, 778.5302

Brevibacillin Ile8 (**9**): White powder, 16% isolated yield (18.4 mg). RP-HPLC t_{R} = 9.28 min. HRMS (ESI-TOF) *m/z* calcd for C₈₁H₁₄₄N₁₆O₁₆: [M+H]⁺ 1598.1019, [M+2H]²⁺ 799.5546; found 1598.1082, 799.5537.

Brevibacillin COOH (**10**): White powder, 28% isolated yield (28 mg). RP-HPLC t_R = 8.60 min. HRMS (ESI-TOF) *m*/*z* calcd for C₈₀H₁₄₀N₁₆O₁₇: [M+H]⁺ 1598.0655, [M+2H]²⁺ 799.5364; found 1598.0715, 799.5351.

*Brevibacillin CONH*² (**11**): White powder, 7% isolated yield (7.6 mg). RP-HPLC t_R = 8.74 min. HRMS (ESI-TOF) *m*/*z* calcd for C₈₀H₁₄₁N₁₇O₁₆: [M+H]⁺ 1597.0815, [M+2H]²⁺ 799.5364; found 1597.0882, 799.5351.

Brevibacillin Thr1 (**12**): White powder, 18% isolated yield (17.8 mg). RP-HPLC t_R = 8.68 min. HRMS (ESI-TOF) *m*/*z* calcd for C₈₀H₁₄₄N₁₆O₁₇: [M+H]⁺ 1602.0968, [M+2H]²⁺ 801.5520; found 1602.1031, 801.5512.

Brevibacillin Ser1 (**13**): White powder, 15% isolated yield (14.9 mg). RP-HPLC t_R = 8.56 min. HRMS (ESI-TOF) *m*/*z* calcd for C₇₉H₁₄₂N₁₆O₁₇: [M+H]⁺ 1588.0812, [M+2H]²⁺ 794.5442; found 1588.0869, 794.544.

Brevibacillin Ala1 (**14**): White powder, 14% isolated yield (12.7 mg). RP-HPLC t_R = 9.00 min. HRMS (ESI-TOF) *m*/*z* calcd for C₇₉H₁₄₂N₁₆O₁₆: [M+H]⁺ 1572.0862, [M+2H]²⁺ 786.5468; found 1572.0924, 794.5459.

Brevibacillin Abu1 (**15**): White powder, 20% isolated yield (20 mg). RP-HPLC t_{R} = 9.02 min. HRMS (ESI-TOF) *m*/*z* calcd for C₈₀H₁₄₄N₁₆O₁₆: [M+H]⁺ 1586.1019, [M+2H]²⁺ 793.5546; found 1586.1079, 793.5533.

Brevibacillin Val1 (**16**): White powder, 6% isolated yield (7.9 mg). RP-HPLC t_{R} = 9.23 min. HRMS (ESI-TOF) *m/z* calcd for C₈₁H₁₄₆N₁₆O₁₆: [M+H]⁺ 1600.1175, [M+2H]²⁺ 800.5624; found 1600.1237, 800.5606.

Brevibacillin Abu1/Val4,5 (**17**): White powder, 10% isolated yield (12.2 mg). RP-HPLC $t_{\rm R}$ = 8.52 min. HRMS (ESI-TOF) *m/z* calcd for C₇₈H₁₄₀N₁₆O₁₆: [M+H]⁺ 1558.0706, [M+2H]²⁺ 779.5389; found 1558.0763, 779.5378.

*Brevibacillin Abu1/CONH*² (**18**): White powder, 9% isolated yield (8.7 mg). RP-HPLC t_{R} = 8.83 min. HRMS (ESI-TOF) *m/z* calcd for C₈₀H₁₄₃N₁₇O₁₆: [M+H]⁺ 1599.0971, [M+2H]²⁺ 800.0522; found 1599.1037, 800.0502.

Brevibacillin Ac-Ile/Abu1 (**19**): White powder, 12% isolated yield (15.8 mg). RP-HPLC $t_R = 9.18$ min. HRMS (ESI-TOF) *m/z* calcd for C₈₂H₁₄₇N₁₇O₁₆: [M+H]⁺ 1627.1284, [M+2H]²⁺ 814.0679; found 1627.1354, 814.0663.

*Brevibacillin Ac-Ile/Abu1/CONH*² (**20**): White powder, 7% isolated yield (8 mg). RP-HPLC t_R = 8.83 min. HRMS (ESI-TOF) *m/z* calcd for C₈₂H₁₄₆N₁₈O₁₆: [M+H]⁺ 1640.1237, [M+2H]²⁺ 820.5655; found 1640.1295, 820.5643.

Figure S1. ¹H NMR spectra of compounds 2-6.

Figure S2. ¹³C NMR spectra of compounds 2-6.

Figure S3. HRMS (ESI-TOF) spectra of compounds 2-6.

[M+H]⁺ calculated for C₁₉H₃₂O₃Si: 337.2193; found 337.2199

(2S,3S)-2-{[tert-butyl(dimethyl)silyl]oxy}-3-methylpentanoic (3)

 $[M+H]^+$ calculated for $C_{12}H_{26}O_3Si$: 247.1724; found 247.1726

Methyl N-[(2S,3S)-2-{[tert-butyl(dimethyl)silyl]oxy}-3-methylpentanoyl]-L-threoninate (4)

[M+H]⁺ calculated for C₁₇H₃₆NO₅Si: 362.2357; found 362.2364

Methyl (2Z)-2-{[(2S,3S)-2-{[tert-butyl(dimethyl)silyl]oxy}-3-methylpentanoyl]amino}but-2enoate (5)

 $[M+H]^+$ calculated for $C_{17}H_{34}NO_4Si$: 344.2252; found 344.2257

(2Z)-2-{[(2S,3S)-2-{[tert-butyl(dimethyl)silyl]oxy}-3-methylpentanoyl]amino}but-2-enoic acid (6)

 $[M+H]^+$ calculated for C₁₆H₃₂NO₄Si: 330.2095; found 330.2097

Figure S4. HPLC profiles (λ = 220 nm) and ESI-MS spectra of synthesized peptides 1, 7-20.

Brevibacillin Val5 (7)

Brevibacillin Val4,5 (8)

Brevibacillin COOH (10)

Brevibacillin CONH₂ (11)

Brevibacillin Ser1 (13)

Brevibacillin Ala1 (14)

Brevibacillin Val1 (16)

Brevibacillin Abu1/Val4,5 (17)

Brevibacillin Ac-Ile/Abu1 (19)

Brevibacillin Ac-Ile/Abu1/CONH₂ (20)

Figure S5. Hemolytic activity of compounds 1, 7-20 at concentrations of 2, 4, 8, 16, 32, 64, 128, and 256 μ g/mL.

Figure S6. Dose-response of compounds **1**, **7-20** at concentrations of 2, 4, 8, 16, 32, 64, 128, and 256 μ g/mL on the viability of Caco-2 cells.

щ	Peptide	Chemical formula	Yield (%)	HPLC rt (min)	D	HRMS (ESI-TOF) (da)			
#					Furity (70) ²	Calculated	Observed		
1	Brevibacillin (Brevi)	C ₈₀ H ₁₄₂ N ₁₆ O ₁₆	14	8.93	>98	[M+H] ⁺ 1584.0620	1584.0914		
						[M+2H] ²⁺ 792.5468	792.5457		
7	Brevi Val5	C ₇₉ H ₁₄₀ N ₁₆ O ₁₆	20	8.89	95	[M+H] ⁺ 1570.0706	1570.0749		
						[M+2H] ²⁺ 785.5389	785.5363		
8	Brevi Val4,5	C ₇₈ H ₁₃₈ N ₁₆ O ₁₆	21	8.66	95	[M+H] ⁺ 1556.0549	1556.1082		
						[M+2H] ²⁺ 778.5311	778.5302		
9	Brevi Ile8	$C_{81}H_{144}N_{16}O_{16}$	16	9.28	>98	[M+H] ⁺ 1598.1019	1598.1082		
						[M+2H] ²⁺ 799.5546	799.5537		
10	Brevi COOH	$C_{80}H_{140}N_{16}O_{17}$	28	8.60	97	[M+H] ⁺ 1598.0655	1598.0715		
						[M+2H] ²⁺ 799.5364	799.5351		
11	Brevi CONH ₂	$C_{80}H_{141}N_{17}O_{16}$	7	8.74	96	[M+H] ⁺ 1597.0815	1597.0882		
						[M+2H] ²⁺ 799.0444	799.0435		
12	BreviThr1	$C_{80}H_{144}N_{16}O_{17}$	18	8.68	96	[M+H] ⁺ 1602.0968	1602.1031		
						[M+2H] ²⁺ 801.5520	801.5512		
13	Brevi Ser1	$C_{79}H_{142}N_{16}O_{17}$	15	8.56	95	[M+H] ⁺ 1588.0812	1588.0869		
						[M+2H] ²⁺ 794.5442	794.5440		
14	Brevi Ala1	$C_{79}H_{142}N_{16}O_{16}$	14	9.00	>98	[M+H] ⁺ 1572.0862	1572.0924		
						[M+2H] ²⁺ 786.5468	794.5459		
15	Brevi Abu1	$C_{80}H_{144}N_{16}O_{16}$	20	9.02	95	[M+H] ⁺ 1586.1019	1586.1079		
						[M+2H] ²⁺ 793.5546	793.5533		
16	Brevi Val1	$C_{81}H_{146}N_{16}O_{16}$	6	9.23	95	[M+H] ⁺ 1600.1175	1600.1237		
						[M+2H] ²⁺ 800.5624	800.5606		
17	Brevi Abu1/Val4,5	$C_{78}H_{140}N_{16}O_{16}$	10	8.52	96	[M+H] ⁺ 1558.0706	1558.0763		
						[M+2H] ²⁺ 779.5389	779.5378		
18	Brevi Abu1/CONH ₂	$C_{80}H_{143}N_{17}O_{16}$	9	8.83	>98	[M+H] ⁺ 1599.0971	1599.1037		
						[M+2H] ²⁺ 800.0522	800.0502		
19	Brevi Ac-Ile/Abu1	$C_{82}H_{147}N_{17}O_{16}$	12	9.18	97	[M+H] ⁺ 1627.1284	1627.1354		
						[M+2H] ²⁺ 814.0679	814.0663		
20	Brevi Ac-Ile/Abu1/CONH ₂	$C_{82}H_{146}N_{18}O_{16}$	7	8.83	97	[M+H] ⁺ 1640.1237	1640.1295		
						[M+2H] ²⁺ 820.5655	820.5643		

Table S1. Chemical characterization of synthesized peptides.

^aPeptide purities were determined by HPLC with UV absorption at 220 nm

		Minimum Bactericidal Concentration (µg/mL)								
#	Peptide	Gram-positive				Gram-negative				
		S.aª	L.mª	B.sª	E.fª	С.р	P.a ^c	S.e ^c	E.c ^c	C.c ^d
1	Brevibacillin (Brevi)	4	4	2	8	4	4	64	32	8
7	Brevi Val4	8	4	2	32	8	2	NA	64	16
8	Brevi Val4,5	32	16	8	64	16	16	NA	128	64
9	Brevi Ile8	2	2	0.5	2	2	2	128	32	8
10	Brevi COOH	NA	256	NA	NA	128	NA	NA	NA	64
11	Brevi CONH ₂	8	4	4	32	16	4	NA	NA	NA
12	Brevi Thr1	4	8	1	32	4	2	NA	32	16
13	Brevi Ser1	16	4	4	NA	8	4	NA	32	32
14	Brevi Ala1	2	4	2	4	2	1	NA	64	32
15	Brevi Abu1	1	0.5	1	2	2	1	NA	NA	32
16	Brevi Val1	4	2	1	8	8	4	NA	NA	16
17	Brevi Abu1/Val4,5	4	8	4	NA	8	4	NA	128	32
18	Brevi Abu1/CONH2	8	4	2	128	8	8	NA	NA	64
19	Brevi N-Ac-Ile/Abu1	4	4	4	32	2	4	NA	NA	64
20	Brevi N-Ac-Ile/Abu1/CONH2	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table S2. Minimum bactericidal activity of the synthesized peptides 1, 7-20.

Abbreviations and selected strains: **S.a** (*Staphylococcus aureus* ATCC 6538), **L.m** (*Listeria monocytogenes* ATCC 19111), **B.s** (*Bacillus subtilis* ATCC 23957), **E.f** (*Enterococcus faecalis* ATCC 29212), **C.p** (*Clostridium perfringens* ATCC 3628), **P.a** (*Pseudomonas aeruginosa* ATCC 25853), **S.e** (*Salmonella enterica serovar Newport* ATCC 6962) and **E.c** (*Escherichia coli* ATCC 25922), **C.c** (*Campylobacter coli* ATCC 33559).

Used medium and growth conditions: ^aIncubated in TSB (Tryptic Soy Broth) for 20 h at 37°C, ^b Incubated in RCM (Reinforced Clostridial Medium) for 20 h at 37°C, ^c Incubated in LB (Luria-Bertani) for 20 h at 37°C, ^dIncubated in Brucella for 48 h at 37°C

		MBC/MIC ratio								
#	Peptide	Gram-positive				Gram-negative				
		S.aª	L.mª	B.sª	E.fª	С.р ^b	P.a ^c	S.e ^c	E.c ^c	C.c ^d
1	Brevibacillin (Brevi)	2	2	2	2	1	4	1	1	1
7	Brevi Val4	2	4	1	2	2	1	NA	NA	1
8	Brevi Val4,5	8	4	1	2	1	4	NA	NA	2
9	Brevi lle8	1	2	1	1	1	2	2	2	1
10	Brevi COOH	NA	2	NA	NA	1	NA	NA	NA	2
11	Brevi CONH ₂	2	2	1	2	1	1	NA	NA	NA
12	Brevi Thr1	2	2	1	2	1	1	NA	NA	1
13	Brevi Ser1	2	4	2	NA	1	1	NA	NA	1
14	Brevi Ala1	1	4	1	1	1	1	NA	NA	4
15	Brevi Abu1	1	1	1	1	1	1	NA	NA	8
16	Brevi Val1	4	2	1	2	2	4	NA	NA	2
17	Brevi Abu1/Val4,5	2	2	1	NA	1	2	NA	NA	2
18	Brevi Abu1/CONH ₂	4	2	1	2	1	4	NA	NA	4
19	Brevi N-Ac-Ile/Abu1	2	2	1	1	1	2	NA	NA	4
20	Brevi N-Ac-Ile/Abu1/CONH2	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table S3. MBC/MIC ratio of the synthesized peptides 1, 7-20.

Abbreviations and selected strains: **S.a** (*Staphylococcus aureus* ATCC 6538), **L.m** (*Listeria monocytogenes* ATCC 19111), **B.s** (*Bacillus subtilis* ATCC 23957), **E.f** (*Enterococcus faecalis* ATCC 29212), **C.p** (*Clostridium perfringens* ATCC 3628), **P.a** (*Pseudomonas aeruginosa* ATCC 25853), **S.e** (*Salmonella enterica serovar Newport* ATCC 6962) and **E.c** (*Escherichia coli* ATCC 25922), **C.c** (*Campylobacter coli* ATCC 33559).

Used medium and growth conditions: ^aIncubated in TSB (Tryptic Soy Broth) for 20 h at 37°C, ^b Incubated in RCM (Reinforced Clostridial Medium) for 20 h at 37°C, ^c Incubated in LB (Luria-Bertani) for 20 h at 37°C, ^dIncubated in Brucella for 48 h at 37°C

REFERENCES

- Yamashita, T.; Kuranaga, T.; Inoue, M. Solid-phase total synthesis of bogorol A: stereocontrolled construction of thermodynamically unfavored (E)-2-amino-2-butenamide. *Org. Lett.* 2015, *17*, 2170-2173.
- 2) Hanessian, S.; Xie, F., Polymer-bound p-alkoxybenzyl trichloracetimidates: Reagents for the protection of alcohols as benzyl ethers on solid-phase. *Tet. Lett.* **1998**, 39, 733-736
- 3) Gude, M.; Ryf, J.; White, P.D. An accurate method for the quantification of Fmoc-derivatized solid phase supports. *Lett. Pept. Sci.* **2002**, *9*, 203-206