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Equations from Direct Observation Methods

The reaction of an enzyme with an irreversible inhibitor, in the absence of any substrate, typically 

takes place by the following two-step kinetic scheme (shown as Scheme 1 in the manuscript):

E  +  I E•I E-I
k+I

k-I

kinact

From this scheme it is evident that the total concentration of catalytically competent enzyme (i.e. 

) is converted irreversibly into the catalytically inactive species E-I, as a function [E]𝑐𝑎𝑡= [E] + [E•I]

of time.  The conservation of mass equation for all enzyme species is:

(i)[E]0 = [E]𝑐𝑎𝑡+ [E - I]

The kinetic scheme above provides the rate law

𝑑
𝑑𝑡
[E - I] = 𝑘𝑖𝑛𝑎𝑐𝑡[E•I]

where the total concentration of enzyme does not change ( ) so we can write:
𝑑
𝑑𝑡
[𝐸]0 = 0

(ii)
𝑑
𝑑𝑡
[E]𝑐𝑎𝑡= ‒ 𝑘𝑖𝑛𝑎𝑐𝑡[E•I]

The steady state approximation can then be applied:

𝑘+ 𝐼[𝐸][𝐼] = 𝑘 ‒ 𝐼[E•I] + 𝑘𝑖𝑛𝑎𝑐𝑡[E•I]

𝐾I =
[𝐸][𝐼]
[E•I]

=
𝑘 ‒ 𝐼+ 𝑘𝑖𝑛𝑎𝑐𝑡

𝑘+ 𝐼

[𝐸] =
𝐾I[E•I]
[𝐼]

From which 
[𝐸]𝑐𝑎𝑡=

𝐾I[E•I]
[𝐼]

+ [E•I] = [E•I](1 + 𝐾I

[𝐼]) = [E•I]([𝐼] + 𝐾I

[𝐼] )
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(iii)
[E•I] = [E]cat ∙

[I]
[I] + 𝐾I

To obtain a rate law for disappearance of active enzyme in terms of the kinetic parameters for 

irreversible inhibition, one can substitute (iii) into (ii) to give:

(iv)

𝑑
𝑑𝑡
[E]𝑐𝑎𝑡= ‒ 𝑘𝑖𝑛𝑎𝑐𝑡 ∙ [E]cat ∙

[I]
[I] + 𝐾I

Integration of equation (iv), using the equality [E]cat = [E]0 at time zero, gives:

(v)[E]𝑐𝑎𝑡(𝑡)= [𝐸]0𝑒
‒ 𝑘𝑖𝑛𝑎𝑐𝑡 ∙

[I]
[I] + 𝐾I

∙ 𝑡

The time-dependent formation of modified enzyme (E-I) can be written explicitly as:

(Eqn. S1)
[E - I] = [𝐸]0(1 ‒ 𝑒

‒ 𝑘𝑖𝑛𝑎𝑐𝑡 ∙
[I]

[I] + 𝐾I
∙ 𝑡

)
The observed rate constant for formation of E-I can be defined as kobs, as follows: 

(Eqn. S2)
k𝑜𝑏𝑠=

𝑘𝑖𝑛𝑎𝑐𝑡 ∙ [I]
[I] + 𝐾I

Eqn. S2 also shows the hyperbolic dependence of the observed rate constant on inhibitor 

concentration. 

Eqn. S1 describes a mono-exponential association curve, which is commonly included in most 

fitting software packages.  Otherwise, it can be entered as the following plain text equation:

Y = Y0 + (Plateau-Y0)*(1-EXP(-kobs*X))

where Y0 is typically zero, after correction for background signal.
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Eqn. S2 may also be manipulated to generate a double reciprocal version, for linear regression:  

(Eqn. S3)

1
k𝑜𝑏𝑠

=
𝐾I

𝑘𝑖𝑛𝑎𝑐𝑡
∙
1
[I]
+

1
𝑘𝑖𝑛𝑎𝑐𝑡

However, fitting to this equation can be highly error-prone and is not recommended. To illustrate 

this, the three data sets shown in Figure S1 were simulated for a low solubility inhibitor and 

include ≤10% random relative error in each rate constant. These data sets were then fitted to Eqn. 

S3.
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Figure S1. Simulated data points that incorporate less than 10% random error in each rate constant, 

which were then fitted to double reciprocal Eqn. S3. The fitted values of kinact, KI and kinact/KI are 

shown in Table S1.

While the fitting shown in Fig. S1 appears to be excellent for each data set (R2 > 0.99), the values 

derived from the fitting are highly erroneous. The same data points from Fig. S1 are shown in Fig. 

S2, where the solid lines represent the theoretical curves corresponding to the authentic kinetic 

parameters used to generate the simulated data.
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Figure S2. Hyperbolic curves corresponding to the authentic kinetic parameters listed in Table 

S1, which were used to generate the simulated data sets, also shown in Figure S1. 
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Table S1.  Comparison of authentic kinetic parameters used to generate simulated datasets (Figs. 

S1 and S2) and those derived from double reciprocal fitting (Fig. S1).

Authentic Values Fitted Values

Dataset
kinact

(min-1)
KI

(µM)
kinact/KI

(µM-1min-1)
kinact

(min-1)
KI

(µM)
kinact/KI

(µM-1min-1)

Blue 0.1 1.0 0.10 0.043 0.410 0.106

Green 0.5 5.0 0.10 0.051 0.525 0.097

Red 1.0 10 0.10 0.132 1.35 0.098

Even a cursory inspection of the values in Table S1 reveals that the individual values of kinact and 

KI derived from the double reciprocal fitting shown in Fig. S1 can differ from the authentic values 

by nearly an order of magnitude. However, the ratios of the fitted values (kinact/KI) all compare 

favourably to the authentic values of 0.1. Intuitively, it is obvious from Fig. S2 that the datasets 

can only provide a good estimate of the kinact/KI ratio, as the linear portion of the hyperbolic curves, 

defined at the lowest inhibitor concentrations. However, it may not be as apparent from the double 

reciprocal plot shown in Fig. S2 that the individual fitted values of kinact and KI may be highly 

unreliable. This illustrates an important caveat: For datasets that do not show saturation, and cannot 

be fitted to a hyperbolic curve, fitting to a double reciprocal equation does not necessarily provide 

independent values for kinact and KI that are any more reliable.
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Equations from Evaluation by Continuous Activity Assays

When a continuous activity assay is available, irreversible inhibition can be monitored by 

incubating the enzyme in the presence of both the irreversible inhibitor and the substrate of the 

reporter assay. The kinetic scheme representing this experiment is shown below, presented as 

Scheme 2 in the manuscript: 

E E•S E +   P
k+S

k-S

kcat

E•I E-I

k+Ik-I

kinact

S

SI I

The concentration of remaining free enzyme E is indicated by its reaction with substrate S to form 

product P. In the presence of a competitive inhibitor such as I, product formation will proceed at 

an inhibited rate vI given by the following equation, where the effective KM is increased by the 

term (1 + [I]/KI):

(vi)

v𝐼=
𝑑
𝑑𝑡
[𝑃]𝐼=

𝑘𝑐𝑎𝑡 ∙ [S] ∙ [E]0

[S] + 𝐾M(1 + [𝐼]𝐾𝐼
)

Over the course of the experiment, the total concentration of active enzyme decreases in a time-

dependent fashion. This results in a the time-dependent change in the rate of product formation, 

such that [E]0 in equation (vi) must be replaced with [E]cat(t):

(vii)

v𝐼(𝑡)=
𝑑
𝑑𝑡
[𝑃]𝐼(𝑡)=

𝑘𝑐𝑎𝑡 ∙ [S] ∙ [E]𝑐𝑎𝑡(𝑡)

[S] + 𝐾M(1 + [𝐼]𝐾𝐼
)
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Equations (iv) and (v) describe the concentration of catalytically active enzyme in the presence of 

an irreversible inhibitor, but in the context of the simultaneous reaction with substrate, these 

equations must be modified to account for competition between inhibitor and substrate (see 

Scheme 2). This is easily managed by multiplying KI by the term α = 1 + ([S]/KM):

(Eqn. S4)[E]𝑐𝑎𝑡(𝑡)= [𝐸]0𝑒
‒ 𝑘𝑜𝑏𝑠 ∙ 𝑡

where (Eqn. S5)

k𝑜𝑏𝑠=
𝑘𝑖𝑛𝑎𝑐𝑡 ∙ [I]

[I] + 𝐾I(1 + [𝑆]
𝐾𝑀

)
The substitution of Eqn. S4 into equation (vii) provides an equation that shows how the rate of 

product formation changes as a function of the time-dependent disappearance of active enzyme:

(viii)

v𝐼(𝑡)=
𝑑
𝑑𝑡
[𝑃]𝐼(𝑡)=

𝑘𝑐𝑎𝑡 ∙ [S] ∙ [𝐸]0𝑒
‒ 𝑘𝑜𝑏𝑠 ∙ 𝑡

[S] + 𝐾M(1 + [𝐼]𝐾𝐼
)

=
𝑉𝑚𝑎𝑥 ∙ [S]

[S] + 𝐾M(1 + [𝐼]𝐾𝐼
)
∙ 𝑒

‒ 𝑘𝑜𝑏𝑠 ∙ 𝑡

The integration of equation (viii) from the beginning of the reaction (t=0, P=0), provides an explicit 

equation for the concentration of product formed at any time t, due to the reaction of enzyme with 

substrate, with simultaneous irreversible inhibition:

(ix)

P

∫
0

𝑑[P]I(t) =
𝑉𝑚𝑎𝑥 ∙ [S]

[S] + 𝐾M(1 + [𝐼]𝐾𝐼
)
∙

𝑡

∫
0

𝑒
‒ 𝑘𝑜𝑏𝑠 ∙ 𝑡 ∙ 𝑑𝑡

(x)

[𝑃]𝐼(𝑡)=
𝑉𝑚𝑎𝑥 ∙ [S]

[S] + 𝐾M(1 + [𝐼]𝐾𝐼
)
∙ (1 ‒ 𝑒 ‒ 𝑘𝑜𝑏𝑠𝑡𝑘𝑜𝑏𝑠 )

Equation (x) can be simplified by substitution from equation (vii):
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(Eqn. S6)
[𝑃]𝐼(𝑡)=

𝑉𝐼
𝑘𝑜𝑏𝑠

∙ (1 ‒ 𝑒 ‒ 𝑘𝑜𝑏𝑠𝑡)

This equation shows that the formation of product from a continuous assay reaction, with 

concomitant irreversible inhibition, follows a mono-exponential association curve, to an upper 

plateau of (VI / kobs). In practice, VI can be very difficult to measure accurately, over the initial 

~10% of the reaction, corresponding to a time period as short as 0.1/kobs. It is also inconvenient to 

measure VI and include its different, independent value as a constraint for the fitting of each 

reaction curve. For these practical reasons, this fitting constraint is rarely performed, and the upper 

plateau is fitted as an independent parameter, according to the following equation:

(Eqn. S7)[𝑃]𝐼(𝑡)= [𝑃]𝐼(∞) ∙ (1 ‒ 𝑒
‒ 𝑘𝑜𝑏𝑠𝑡)

As shown for Eqn. S1, Eqn. S7 also describes a mono-exponential association curve, commonly 

included in most fitting software. Alternatively, it can be entered as the following plain text 

equation:

Y = Y0 + (Plateau-Y0)*(1-EXP(-kobs*X))

where Y0 is typically zero, after correction for background signal.

If reaction progress is followed by monitoring substrate depletion, rather than product formation, 

the following alternative equation can be used to fit for kobs:

(Eqn. S7b)[𝑆]𝐼(𝑡)= ([𝑆]𝐼(0) ‒ [𝑆]𝐼(∞)) ∙ (𝑒
‒ 𝑘𝑜𝑏𝑠𝑡) + [𝑆]𝐼(∞)

Likewise, the corresponding plain text version that can be used for fitting software is:

Y = Plateau + (Y0-Plateau)*(EXP(-kobs*X))
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where Y0 is the signal for the initial substrate concentration, and Plateau corresponds to the final 

substrate concentration after complete enzyme inhibition.
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Implicit Equation for the Time-Dependence of Incubation IC50 Values

For many enzymes, no continuous assay exists for monitoring their activity in real time. When a 

continuous assay is not available, it becomes necessary to apply a discontinuous end-point assay 

instead. The kinetic scheme describing this experiment is identical to that shown in the preceding 

section (namely Scheme 2 from the manuscript):

E E•S E +   P
k+S

k-S

kcat

E•I E-I

k+Ik-I

kinact

S

SI I

However, importantly, product concentration is measured once, as an end-point, after a defined 

period of incubation. Inhibitor concentration is then varied, and the experiment is repeated, leading 

to a different end-point product concentration. These [product] vs [inhibitor] data are then used to 

construct IC50 plots, at varied incubation times. The IC50 value derived from each plot is defined 

as the concentration of inhibitor that gives 50% inhibition relative to the uninhibited reaction 

performed under the same conditions. Practically speaking, 50% inhibition is defined as the end-

point product concentration that is half of the upper plateau of the sigmoidal dose-response curve 

(assuming the lower plateau has been normalised to zero). The upper plateau represents the 

concentration of product generated by the uninhibited enzymatic reaction, whose rate is given by 

the following equation:

(xi)
𝑣=

𝑑
𝑑𝑡
[𝑃] =

𝑘𝑐𝑎𝑡 ∙ [S] ∙ [E]0
[S] + 𝐾M
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Typically, these assays are performed under conditions where substrate concentration does not 

vary significantly over the time course of the experiment, such that the maximum concentration of 

product formed from the uninhibited reaction at any time t is given by:

(xii)
[𝑃]𝑚𝑎𝑥⁡(𝑡)=

𝑘𝑐𝑎𝑡 ∙ [S] ∙ [E]0
[S] + 𝐾M

∙ 𝑡

From this the product concentration at the IC50 inflection point can be defined as:

(xiii)
[𝑃]𝐼𝐶50⁡(𝑡)

=
1
2
[𝑃]𝑚𝑎𝑥⁡(𝑡)=

1
2
∙
𝑘𝑐𝑎𝑡 ∙ [S] ∙ [E]0
[S] + 𝐾M

∙ 𝑡

Eqn. S5, from the preceding section, also tells us the concentration of product formed, in the 

presence of inhibitor. So, when the inhibitor concentration is equal to IC50, Eqn. S5 can be set 

equal to equation (xiii):  

(xiv)
[𝑃]𝐼𝐶50(𝑡)

=
𝑉𝐼
𝑘𝑜𝑏𝑠

∙ (1 ‒ 𝑒 ‒ 𝑘𝑜𝑏𝑠𝑡) = 12 ∙
𝑘𝑐𝑎𝑡 ∙ [S] ∙ [E]0
[S] + 𝐾M

∙ 𝑡

Equation (xiv) can be expanded, using equation (vi) and setting [I] = IC50(t), to give:

𝑘𝑐𝑎𝑡 ∙ [S] ∙ [E]0

[S] + 𝐾M(1 + 𝐼𝐶50(𝑡)

𝐾𝐼
)

𝑘𝑜𝑏𝑠
∙ (1 ‒ 𝑒 ‒ 𝑘𝑜𝑏𝑠𝑡) = 12 ∙

𝑘𝑐𝑎𝑡 ∙ [S] ∙ [E]0
[S] + 𝐾M

∙ 𝑡

𝑘𝑐𝑎𝑡 ∙ [S] ∙ [E]0

[S] + 𝐾M(1 + 𝐼𝐶50(𝑡)
𝐾𝐼

)
∙
(2 ‒ 2𝑒 ‒ 𝑘𝑜𝑏𝑠𝑡)

𝑘𝑜𝑏𝑠 ∙ 𝑡
=
𝑘𝑐𝑎𝑡 ∙ [S] ∙ [E]0
[S] + 𝐾M

(2 ‒ 2𝑒 ‒ 𝑘𝑜𝑏𝑠𝑡)
𝑘𝑜𝑏𝑠 ∙ 𝑡

=
𝑘𝑐𝑎𝑡 ∙ [S] ∙ [E]0
𝑘𝑐𝑎𝑡 ∙ [S] ∙ [E]0

∙

[S] + 𝐾M(1 + 𝐼𝐶50(𝑡)
𝐾𝐼

)
[S] + 𝐾M

S12



(2 ‒ 2𝑒 ‒ 𝑘𝑜𝑏𝑠𝑡)
𝑘𝑜𝑏𝑠 ∙ 𝑡

=

[S] + 𝐾M(1 + 𝐼𝐶50(𝑡)
𝐾𝐼

)
[S] + 𝐾M

(2 ‒ 2𝑒 ‒ 𝑘𝑜𝑏𝑠𝑡)
𝑘𝑜𝑏𝑠 ∙ 𝑡

=

[S] + 𝐾M + 𝐾M

𝐼𝐶50(𝑡)
𝐾𝐼

[S] + 𝐾M

([S] + 𝐾M)
(2 ‒ 2𝑒 ‒ 𝑘𝑜𝑏𝑠𝑡)

𝑘𝑜𝑏𝑠 ∙ 𝑡
= [S] + 𝐾M + 𝐾M

𝐼𝐶50(𝑡)
𝐾𝐼

([S] + 𝐾M)
(2 ‒ 2𝑒 ‒ 𝑘𝑜𝑏𝑠𝑡)

𝑘𝑜𝑏𝑠 ∙ 𝑡
‒ ([S] + 𝐾M) = 𝐾M

𝐼𝐶50(𝑡)
𝐾𝐼

([S] + 𝐾M)((2 ‒ 2𝑒
‒ 𝑘𝑜𝑏𝑠𝑡)

𝑘𝑜𝑏𝑠 ∙ 𝑡
‒ 1) = 𝐾M

𝐼𝐶50(𝑡)
𝐾𝐼

𝐼𝐶50(𝑡)=
𝐾𝐼

𝐾M
([S] + 𝐾M)((2 ‒ 2𝑒

‒ 𝑘𝑜𝑏𝑠𝑡)
𝑘𝑜𝑏𝑠 ∙ 𝑡

‒ 1)

(Eqn. S8)
𝐼𝐶50(𝑡)= 𝐾𝐼(1 + [S]

𝐾M
)((2 ‒ 2𝑒

‒ 𝑘𝑜𝑏𝑠𝑡)
𝑘𝑜𝑏𝑠 ∙ 𝑡

‒ 1)
It should be noted that this equation was first published by Krippendorff et al.1 In Eqn. S8, kobs is 

defined as per equation (Eqn. S4), but [I] is equal to IC50(t), such that

(xv)

k𝑜𝑏𝑠=
𝑘𝑖𝑛𝑎𝑐𝑡 ∙ 𝐼𝐶50(𝑡)

𝐼𝐶50(𝑡) + 𝐾I(1 + [𝑆]
𝐾𝑀

)
This means that Eqn. S8 is an implicit equation, since IC50(t) appears on both sides of the equation. 

However, it can be solved easily by least squares regression, and the implicit equation can also be 

used to fit experimental values of IC50(t), measured at different incubation times. The plain text 
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version of Eqn. S8 can be entered into most fitting software packages, as a user-defined implicit 

equation. More specifically, data sets of time-dependent IC50 values (Y) versus the ‘incubation’ 

time of their measurement (X) can be fitted by non-linear least squares regression to provide the 

kinetic parameters kinact and KI
app :

Y=KIapp*(((2-2*EXP(-kinact*X*Y/(Y+KIapp)))/(kinact*X*Y/(Y+KIapp)))-1)

Note that in this version of the equation, .
𝐾app

I = 𝐾𝐼(1 + [S]
𝐾M

)
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Limit of Implicit Equation as Incubation Times Approach Zero

As shown in the manuscript (see Figure 6), end-point IC50 values increase markedly at shorter 

incubation times, but Eqn. S8 predicts a finite limiting value (i.e. a y-axis intercept) at infinitely 

short times. This value can be calculated by deriving the limit of Eqn. S8, as t  0.

(Eqn. S8)
𝐼𝐶50(𝑡)= 𝐾𝐼(1 + [S]

𝐾M
)((2 ‒ 2𝑒

‒ 𝑘𝑜𝑏𝑠𝑡)
𝑘𝑜𝑏𝑠 ∙ 𝑡

‒ 1)

Examination of Eqn. S8 (above) shows that as t  0, the term  becomes 

(2 ‒ 2𝑒 ‒ 𝑘𝑜𝑏𝑠𝑡)
𝑘𝑜𝑏𝑠 ∙ 𝑡

indeterminate. By applying L’Hôpital’s rule, the numerator of this term can be replaced with its 

derivative and the denominator of the term with its derivative.

(xvi)
𝑑
𝑑𝑡(2 ‒ 2𝑒

‒ 𝑘𝑜𝑏𝑠𝑡) = 2𝑘𝑜𝑏𝑠𝑒
‒ 𝑘𝑜𝑏𝑠𝑡

(xvii)
𝑑
𝑑𝑡
(𝑘𝑜𝑏𝑠𝑡) = 𝑘𝑜𝑏𝑠

These derivatives of the numerator (xvi) and denominator (xvii) can then be substituted back into 

the indeterminate term to give:

(xviii)
lim
𝑡→0 ((2 ‒ 2𝑒

‒ 𝑘𝑜𝑏𝑠𝑡)
𝑘𝑜𝑏𝑠 ∙ 𝑡 ) = lim𝑡→0 (2𝑘𝑜𝑏𝑠𝑒

‒ 𝑘𝑜𝑏𝑠𝑡

𝑘𝑜𝑏𝑠 ) = lim𝑡→0 (2𝑒 ‒ 𝑘𝑜𝑏𝑠𝑡) = 2
Equation (xviii) indicates that the value of 2 should be substituted for the indeterminate term in 

calculating the limit of Eqn. S7, as follows: 

lim
𝑡→0

IC50(𝑡)= 𝑙𝑖𝑚
𝑡→0(𝐾𝐼(1 + [S]

𝐾M
)((2 ‒ 2𝑒

‒ 𝑘𝑜𝑏𝑠𝑡)
𝑘𝑜𝑏𝑠 ∙ 𝑡

‒ 1))
= (𝐾𝐼(1 + [S]

𝐾M
)(2 ‒ 1))
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(Eqn. S9)
lim
𝑡→0

IC50(𝑡)= 𝐾𝐼(1 + [S]
𝐾M

)
Eqn. S9 indicates that the limiting value for IC50(t) as the incubation time approaches zero is equal 

to KI
app, which is the apparent KI value, under the specific experimental conditions (namely, at the 

concentration of competitive substrate used in the experiment). 

Intuitively, as the incubation time approaches zero, the only form of inhibition that would 

be manifested would be due to rapid equilibrium binding of inhibitor to form E•I, in the first step 

of the two-step inhibition mechanism. Prior to any time-dependent inactivation (to form E-I), any 

observed inhibition would be due to non-covalent binding alone. This explains why the lower limit 

of IC50(t) is defined by KI
app alone and is independent of kinact. 
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Table S2:  Differential equations used in the numerical simulation of the EPIC-Fit method.

Species Differential equation Note

Pre-incubation phase

E-I
𝑑[𝐸 ‒ 𝐼]
𝑑𝑡

=
𝑘𝑖𝑛𝑎𝑐𝑡 ⋅ [𝐼]

([𝐼] + 𝐾𝐼)
⋅ [𝐸]

no competition prior to substrate 

addition; cf equation (iv)

E
𝑑[𝐸]
𝑑𝑡

=‒
𝑑[𝐸 ‒ 𝐼]
𝑑𝑡 [E] depleted as E-I is formed

I
𝑑[𝐼]
𝑑𝑡

=‒
𝑑[𝐸 ‒ 𝐼]
𝑑𝑡 [I] depleted as E-I is formed

Incubation phase

E-I
𝑑[𝐸 ‒ 𝐼]
𝑑𝑡

=
𝑘𝑖𝑛𝑎𝑐𝑡 ⋅ [𝐼]

([𝐼] + 𝐾𝐼(1 + [𝑆]
𝐾𝑀

))
⋅ [𝐸] accounts for competition with substrate; 

cf Eqn. S5

E
𝑑[𝐸]
𝑑𝑡

=‒
𝑑[𝐸 ‒ 𝐼]
𝑑𝑡 [E] depleted as E-I is formed

I
𝑑[𝐼]
𝑑𝑡

=‒
𝑑[𝐸 ‒ 𝐼]
𝑑𝑡 [I] depleted as E-I is formed

P
𝑑[𝑃]
𝑑𝑡

=
𝑘𝑐𝑎𝑡 ⋅ [𝑆]

([𝑆] + 𝐾𝑀(1 + [𝐼]𝐾𝐼
))
⋅ [𝐸] accounts for competitive inhibition by 

inhibitor; see also equation (vii)

S
𝑑[𝑆]
𝑑𝑡

=‒
𝑑[𝑃]
𝑑𝑡 [S] depleted as P is formed
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Code for Numerical Simulation of Product Formation

The concentration of enzyme, inhibitor, substrate and product can be calculated iteratively, over 

the simulation of a biphasic pre-incubation inhibition reaction. These iterative calculations have 

been written Visual Basic, allowing them to be implemented as the function ‘PreIncEndPoint’ in 

Microsoft Excel.2 This function allows for the rapid calculation of a predicted end-point product 

concentration, based on input of experimental parameters and predicted kinact and KI values. The 

predicted end-point values can then be compared against observed end-point values, allowing 

least-squares regression in the fitting of kinact and KI.

Function PreIncEndPoint(PreIncTime, DilFact, IncTime, AddSub, EnzConc, kcat, 

Km, InhConc, kinact, KI)

'Set the granularity of each phase of the simulation to 100 finely-divided 

time intervals

dPreTime = PreIncTime / 100

dIncTime = IncTime / 100

'Pre-incubation phase

For i = 1 To 100    'For each time interval dPreTime

   

   'First calculate instantaneous rate of E-I formation

   EIRate = kinact * InhConc / (InhConc + KI) * EnzConc

      

    'Now calculate incremental changes in concentrations, multiplying rates 

by time interval (dPreTime)

    dEIConc = EIRate * dPreTime     'E and I both decrease by the same amount
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    If dEIConc > EnzConc Then

       dEIConc = EnzConc         'This protects from EnzConc going below zero

    End If

    If dEIConc > InhConc Then

       dEIConc = InhConc         'This protects from InhConc going below zero

    End If

    'Then calculate new concentrations, at the end of this time interval:

    EnzConc = EnzConc - dEIConc  'Conc decrease for enzyme.

    InhConc = InhConc - dEIConc  'Conc decrease for inhibitor.

Next i

'Now account for addition of substrate and dilution of Enz and Inh

SubConc = SubConc + AddSub

EnzConc = EnzConc * DilFact

InhConc = InhConc * DilFact

'Now simulate Incubation phase

For j = 1 To 100    'For each time interval dIncTime

    

   'First calculate instantaneous rate of prod formation, accounting for 

competitive inhibition:

    InstRate = kcat * EnzConc * SubConc / (SubConc + Km * (1 + InhConc / KI))

   'Then calculate instantaneous rate of E-I formation, accounting for 

competition with substrate:

    EIRate = kinact * (InhConc / (InhConc + KI * (1 + SubConc / Km))) * 

EnzConc
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      'Now calculate incremental changes in concentrations, multiplying rates 

by time interval (dIncTime)

    dSPConc = InstRate * dIncTime  'Sub and Prod change by the same amount

    If dSPConc > SubConc Then

       dSPConc = SubConc         'This protects from SubConc going below zero

    End If

       

    dEIConc = EIRate * dIncTime     'E and I both decrease by the same amount

    If dEIConc > EnzConc Then

       dEIConc = EnzConc         'This protects from EnzConc going below zero

    End If

    If dEIConc > InhConc Then

       dEIConc = InhConc         'This protects from InhConc going below zero

    End If

    'Then calculate new concentrations, at the end of this time interval:

    SubConc = SubConc - dSPConc     'Conc decrease for substrate

    ProdConc = ProdConc + dSPConc   'Conc increase for product

    EnzConc = EnzConc - dEIConc     'Conc decrease for enzyme

    InhConc = InhConc - dEIConc     'Conc decrease for inhibitor

Next j

PreIncEndPoint = ProdConc     'Return final product concentration

End Function
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