Supporting Information

Synthesis and antifungal evaluation of new azole derivatives containing 1,2,3-triazole

Zhengxiao Huang, Hongjie Chen, Xiao Zhang, Ruirui Wang,* Chunyan Hu* and Zewei Mao* School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China

1. Experimental section	2
2. NMR spectra	9
3. HRMS spectra	32
4. HPLC spectra	42

1. Experimental section

1.1 General information

Starting reagents and solvents were commercially available and analytically pure without further purification. Nuclear Magnetic Resonance (NMR) spectra were performed recorded on a Bruker AV 400 spectrometer (Bruker Company, Germany). High Performance Liquid Chromatography-Mass Spectrometry (HRMS) spectra were carried out on a Triple TOF 5600⁺ spectrometer (AB Sciex, United States). *Candida albicans* SC5314 was purchased from ATCC Culture Preservation Center (United States). FLC-resistant SC5314-FR was induced by SC5314 with FLC. All strains were frozen in 30% glycerol at -80 °C for use. Axio Vert. A1 Inverted Fluorescence Microscope (Zeiss, Germany), Centrifuge 5810R High Speed Refrigerated Centrifuge (Eppendorf, Germany) and Tecan Spark 10M multimode microplate reader (Tecan) were used for biological pharmacological analysis.

The purity of all compounds was no less than 95% by HPLC analysis. HPLC conditions: Solvent, CH₃CN/water=90:10, flow rate=1.0 mL/min; Column type: Thermo C18 Column 4.6×250 mm; Column temperature: 30 °C; wavelength=210 nm.

1.2 General procedure for the preparation of compound 1

To a stirred solution of 2'-chloro-2,4-dichloroacetophenone (4.47 g, 20 mmol) in acetonitrile (60 mL), potassium carbonate (3.31 g, 24 mmol) and imidazole (1.63 g, 24 mmol) was added, the mixture was refluxed for 4 h. After completion of the reaction as indicated by TLC (PE/EA 3:1, Rf=0.3), the mixture was poured into dichloromethane (DCM, 150 mL) and washed with water (3×150 mL). The organic layer was dried by anhydrous Na₂SO₄, concentrated *in vacuo* and purified by column chromatography (PE/EA 5:1) to afford white solid (4.39 g, 86% yield).

1.3 General procedure for the preparation of compound 2

To a stirred solution of compound **1** (5.10 g, 20 mmol) in methanol solution (60 mL), sodium borohydride (2.27 g, 60 mmol) was added slowly on an ice bath and left to react at rt for 12 h. After completion of the reaction as indicated by TLC (PE/EA 1:1, Rf=0.5), the water (10 mL) was carefully added to the mixture and stirred for 15 minutes. The mixture was extracted with DCM (3×150 mL). The organic layer was dried by anhydrous Na₂SO₄, concentrated in vacuo and purified by column chromatography (DCM) to afford white solid (4.53 g, 88% yield).

1.4 General procedure for the preparation of compound 3

To a stirred solution of compound **2** (5.14 g, 20 mmol) in THF (60 mL), sodium hydride (0.96 g, 40 mmol) was added and the mixture was reacted at 0°C for 1 h. Following that 3-bromopropyl (3.5 mL, 40 mmol) and potassium iodide (0.3 g, 1.8 mmol) was added and the mixture was reacted at rt for 12 h. After completion of the reaction as indicated by TLC (PE/EA 2:1, Rf=0.4), the mixture was added saturated NH₄Cl solution (5 mL) to stir 10 min at 0 °C, until the excess sodium hydride was completely consumed. Then the mixture was extracted with DCM (3×150 mL). The organic layer was dried by anhydrous Na₂SO₄, concentrated in vacuo and purified by column chromatography (PE/EA 3:1) to afford brown oil (5.12 g, 86.5% yield).

1.5 General procedure for synthesis of compound 4a-4w

To a stirred solution of compound **3** (0.1 g, 0.35 mmol) and R-X (0.525 mmol) in ethanol: water =1:1 (4 mL), sodium azide (34 mg, 0.525 mmol), sodium ascorbate (84 mg, 0.42 mmol) and copper acetate (14 mg, 0.07 mmol) were added and the mixture was reacted at 65 °C for 12 h. After completion of the reaction as indicated by TLC (DCM/MeOH 30:1, Rf=0.4), H₂O (5 mL) was added, and then the mixture was extracted with DCM (3×5 mL). The organic layer was dried by anhydrous Na₂SO₄, concentrated in vacuo and purified by column chromatography (DCM/MeOH/TEA 100:1:0.5) to afford compound **4a-4w** (65-84% yields).

Compound 4a: ¹H NMR(400MHz, CDCl₃) δ: 7.18~7.49 (m, 11H), 5.47(s, 2H), 4.94(s, 1H), 4.59(d, *J* = 11.9 Hz, 1H), 4.37(d, *J* = 11.6 Hz, 1H), 4.18(s, 1H), 3.97(s, 1H); ¹³C NMR (100MHz, CDCl₃) δ: 144.10, 134.64, 134.44, 133.70, 133.04, 129.36, 128.91, 128.56, 128.40, 127.94, 127.74, 122.48, 77.48, 77.16, 76.84, 76.43, 62.79, 53.89.

Compound 4b: ¹H NMR (400MHz, CDCl₃) δ : 7.13~7.41(m, 10H), 5.51(q, J = 14.9 Hz, 2H), 4.93~4.95(m, 1H), 4.61(d, J = 12.4 Hz, 1H), 4.37(d, J = 12.5 Hz, 1H), 4.20(s, 1H), 3.97(s, 1H); ¹³C NMR (100MHz, CDCl₃) δ : 144.54, 134.96, 134.79, 133.79, 133.25, 133.11, 129.63, 129.53, 129.30, 128.49, 127.98, 122.51, 77.48, 77.16, 76.84, 76.69, 63.02, 53.36.

Compound 4c: ¹H NMR (400MHz, CDCl₃) δ : 8.23(d, *J* = 8.6 Hz, 2H), 7.31-7.44(m, 5H), 7.30(t, *J* = 6.5 Hz, 1H), 7.21(s, 1H), 6.95(s, 1H), 5.68(q, *J* = 15.5 Hz, 2H), 4.96(d, *J* = 7.4 Hz, 1H), 4.66(d, *J* = 12.8 Hz, 1H), 4.40(d, *J* = 12.8 Hz, 1H), 4.00(d, *J* = 8.1 Hz, 1H), 3.95~3.97(m, 1H); ¹³C NMR (100MHz, CDCl₃) δ : 147.94, 144.84, 141.69, 134.96, 133.66, 133.22, 129.61, 128.75, 128.43, 127.96, 124.20, 122.86, 77.48, 77.36, 77.16, 76.92, 76.84, 62.97, 52.97; HRMS-ESI calcd for C₂₁H₁₉Cl₂N₆O₃ (M+H)⁺ 473.0890, found 473.0893.

Compound 4d: ¹H NMR (400MHz, CDCl₃) δ : 7.69(d, J = 8.3 Hz, 2H), 7.29~7.42(m, 5H), 7.14(s, 1H), 6.90(s, 2H), 5.62(q, J = 15.4 Hz, 2H), 4.95(d, J = 1.9 Hz, 1H), 4.93(d, J = 2.0 Hz, 1H), 4.66(d, J = 12.8 Hz, 1H), 4.39(d, J = 12.8 Hz, 1H), 3.93~4.20(m, 1H); ¹³C NMR (100MHz, CDCl₃) δ : 144.77, 139.76, 134.94, 133.65, 133.21, 132.81, 129.60, 128.51, 128.42, 127.95, 122.76, 118.17, 112.60, 77.48, 77.16, 76.93, 76.84, 62.94, 53.25.

Compound 4e: ¹H NMR (400MHz, CDCl₃) δ : 7.65(d, J = 7.8 Hz, 2H), 7.39-7.41(m, 4H), 7.30(d, J = 8.4 Hz, 1H), 7.20(s, 1H), 6.92(s, 1H), 5.62(q, J = 15.2 Hz, 2H), 4.96(d, J = 6.7 Hz, 1H), 4.64(d, J = 12.6 Hz, 1H), 4.38(d, J = 12.6 Hz, 1H), 4.19(s, 1H), 3.97(s, 1H); ¹³C NMR (100MHz, CDCl₃) δ : 144.65, 138.62, 135.02, 133.70, 133.27, 129.66, 128.48, 128.38, 128.01, 126.08, 126.04, 126.01, 122.78, 77.48, 77.16, 76.84, 63.01, 53.40.

Compound 4f: ¹H NMR (400MHz, CDCl₃) δ : 7.05~7.42(m, 10H), 5.51(q, *J* = 15.0 Hz, 2H), 4.95(d, *J* = 6.3 Hz, 1H), 4.64(d, *J* = 12.6 Hz, 1H), 4.38(d, *J* = 12.7 Hz, 1H), 4.21(s, 1H), 3.98(s, 1H); ¹³C NMR (100MHz, CDCl₃) δ : 151.88, 151.84, 151.76, 151.71, 149.39, 149.35, 149.23, 144.74, 135.08, 133.76, 133.32, 131.70, 131.65, 131.61, 129.72, 128.51, 128.06, 124.49, 124.45, 124.42, 124.39, 122.59, 118.13, 117.96, 117.45, 117.27, 77.48, 77.16, 76.84, 63.07, 53.00. HRMS-ESI calcd for C₂₂H₁₉Cl₂F₃N₅O (M+H)⁺ 496.0913, found 496.0918.

Compound 4g: ¹H NMR (400MHz, CDCl₃) δ : 7.25~7.42(m, 5H), 7.01(s, 1H), 5.95~6.04(m, 1H), 5.28~5.38(dd, J = 9.6 Hz, 9.6 Hz, 2H), 4.98(d, J = 15.6 Hz, 3H), 4.64(d, J = 12.6 Hz, 1H), 4.41(d, J = 12.6 Hz, 1H), 4.22(s, 1H), 4.02(s, 1H); ¹³C NMR (100MHz, CDCl₃) δ : 144.04, 134.86, 133.77, 133.21, 131.06, 129.55, 128.51, 127.91, 122.48, 120.26, 77.48, 77.16, 76.84, 76.63, 62.95, 52.65. **Compound 4h**: ¹H NMR (400MHz, CDCl₃) δ : 7.47(s, 1H), 7.40~7.44(m, 2H), 7.30~7.33(m, 1H), 7.28(s, 1H), 7.02(s, 1H), 6.90(s, 1H), 4.95~4.98(dd, J = 2.6 Hz, 2.5 Hz, 1H), 4.63~4.68(m, 3H), 4.42(d, J = 12.7 Hz, 1H), 4.17~4.21(dd, J = 2.6 Hz, 2.6 Hz, 1H), 3.90~4.01(m, 3H); ¹³C NMR (100MHz, CDCl₃) δ : 144.12, 137.97, 135.12, 133.83, 133.40, 129.79, 128.98, 128.59, 128.12, 123.68, 120.00, 77.48, 77.16, 77.05, 76.84, 63.09, 51.77, 51.45, 42.46; HRMS-ESI calcd for C₁₆H₁₇Cl₃N₅O(M+H)⁺ 400.0493, found 400.0496.

Compound 4i: ¹H NMR (400MHz, CDCl₃) δ : 7.67(s, 1H), 7.29~7.44(m, 4H), 6.95(s, 1H), 5.17~5.21(m, 2H), 5.02(d, J = 7.4 Hz, 1H), 4.69(d, J = 12.5 Hz, 1H), 4.42(d, J = 12.6 Hz, 1H), 4.23~4.30(m, 2H), 4.01~4.06(dd, J = 7.7 Hz, 8.0 Hz, 1H), 3.82(s, 3H); ¹³C NMR (100MHz, CDCl₃) δ : 166.89, 144.29, 135.20, 133.54, 133.37, 129.80, 128.62, 128.15, 124.45, 77.48, 77.16, 76.84, 76.66, 63.02, 62.55, 53.17, 50.93, 50.78.

Compound 4j: ¹H NMR (400MHz, CDCl₃) δ : 7.22~7.51(m, 10H), 5.51(s, 2H), 5.00(s, 1H), 4.60(d, J = 9.8 Hz, 1H), 4.70(s, 2H), 4.05(s, 1H); ¹³C NMR (100MHz, CDCl₃) δ : 144.28, 134.89, 133.68, 133.14, 132.11, 129.82, 129.51, 128.45, 127.89, 122.75, 122.71, 77.48, 77.16, 76.84, 62.89, 53.28, 46.03; HRMS-ESI calcd for C₂₁H₁₉BrCl₂N₅O (M+H)⁺ 508.0122, found 508.0126.

Compound 4k: ¹H NMR (400MHz, CDCl₃) δ : 8.03(s, 2H), 7.31~7.68(m, 9H), 5.95(s, 2H), 5.02(s, 1H), 4.67(d, J = 10.6 Hz, 1H), 4.40(d, J = 10.6 Hz, 2H), 4.03(s, 1H); ¹³C NMR (100MHz, CDCl₃) δ : 190.52, 144.10, 134.93, 134.55, 133.93, 133.26, 129.59, 129.13, 128.57, 128.17, 127.98, 124.82, 77.48, 77.16, 76.84, 63.01, 55.63, 46.00; HRMS-ESI calcd for C₂₂H₂₀Cl₂N₅O₂(M+H)⁺ 456.0989, found 456.0987.

Compound 4I: ¹H NMR (400MHz, CDCl₃) δ : 7.89(d, J = 8.1 Hz, 2H), 7.67(d, J = 8.2 Hz, 2H), 7.42~7.46(m, 4H), 7.29~7.32(m, 1H), 5.92(s, 2H), 5.00(s, 1H), 4.68(d, J = 12.4 Hz, 1H), 4.40(d, J = 12.4 Hz, 1H), 4.24(s, 1H), 4.01(s, 1H); ¹³C NMR (100MHz, CDCl₃) δ : 189.78, 144.08, 134.91, 133.69, 133.22, 132.60, 132.41, 129.83, 129.63, 129.57, 128.51, 127.96, 124.80, 77.48, 77.16, 76.84, 76.50, 62.95, 55.55, 45.97; HRMS-ESI calcd for C₂₂H₁₉BrCl₂N₅O₂(M+H)⁺ 536.0072, found 536.0068.

Compound 4m: ¹H NMR (400MHz, CDCl₃) δ : 8.04~8.07(m, 2H), 7.42~7.44(m, 3H), 7.21~7.33(m, 4H), 6.96(d, J = 24.2 Hz, 2H), 5.89(q, J = 17.7 Hz, 2H), 4.97~5.00(dd, J = 2.5 Hz, 2.5 Hz, 1H), 4.72(d, J = 12.6 Hz, 1H), 4.43(d, J = 12.6 Hz, 1H), 4.17~4.21(dd, J = 2.5 Hz, 2.5 Hz, 1H), 3.94~4.00(dd, J = 8.2 Hz, 8.2 Hz, 1H); ¹³C NMR (100MHz, CDCl₃) δ : 188.84, 167.90, 165.34, 144.48, 135.05, 133.86, 133.38, 131.11, 131.01, 130.47, 130.44, 129.74, 128.91, 128.60, 128.09, 124.65, 120.06, 116.69, 116.47, 77.48, 77.16, 77.02, 76.84, 63.18, 55.39, 51.41.

Compound 4n: ¹H NMR (400MHz, CDCl₃) δ : 7.71(d, J = 8.4 Hz, 1H), 7.54(d, J = 2.0 Hz, 1H), 7.39~7.48(m, 4H), 7.26~7.33(m, 2H), 6.99(s, 1H), 6.91(s, 1H), 5.85(q, J = 18.1 Hz, 2H),

4.96~4.99(dd, J = 2.5 Hz, 2.5 Hz, 1H), 4.71(d, J = 12.6 Hz, 1H), 4.43(d, J = 12.6 Hz, 1H), 4.17~4.21(dd, J = 2.6 Hz, 2.6 Hz, 1H), 3.94~4.00(dd, J = 8.2 Hz, 8.2 Hz, 1H); ¹³C NMR (100MHz, CDCl₃) δ : 144.54, 139.83, 135.16, 133.83, 133.49, 133.44, 133.17, 131.74, 131.13, 129.82, 128.63, 128.16, 128.12, 124.59, 77.48, 77.16, 77.03, 76.84, 63.21, 58.34, 51.51.

Compound 40: ¹H NMR (400MHz, CDCl₃) δ : 7.19~7.59(m, 7H), 6.87(d, J = 7.6 Hz, 2H), 5.80(s, 2H), 4.92(s, 1H), 4.58(d, J = 10.9 Hz, 1H), 4.32(d, J = 11.0 Hz, 1H), 4.14(s, 1H), 3.81~3.87(m, 7H); ¹³C NMR (100MHz, CDCl₃) δ : 154.30, 149.27, 143.89, 134.75, 133.71, 133.12, 129.43, 128.48, 127.84, 126.91, 124.72, 122.95, 110.31, 110.00, 77.48, 77.16, 76.84, 76.45, 62.88, 56.10, 55.95, 55.14, 45.94.

Compound 4p: ¹H NMR (400MHz, CDCl₃) δ : 7.41~7.44(m, 3H), 7.30~7.33(m, 1H), 7.22(s, 1H), 6.97(d, J = 22.4 Hz, 2H), 5.28(q, J = 18.2 Hz, 2H), 4.95~4.97(dd, J = 2.1 Hz, 2.2 Hz, 1H), 4.69(d, J = 12.6 Hz, 1H), 4.40(d, J = 12.6 Hz, 1H), 4.20(d, J = 14.2 Hz, 1H), 3.94~3.99(dd, J = 8.2 Hz, 8.3 Hz,1H), 2.27(s, 3H); ¹³C NMR (100MHz, CDCl₃) δ : 199.06, 144.38, 135.03, 133.77, 133.33, 129.70, 128.55, 128.06, 124.28, 77.48, 77.16, 76.84, 63.07, 58.47, 51.44, 27.28.

Compound 4q: ¹H NMR (400MHz, CDCl₃) δ : 7.69(d, J = 16.0 Hz, 1H), 7.55(d, J = 7.4 Hz, 2H), 7.27~7.40(m, 7H), 6.47(d, J = 16.0 Hz, 1H), 5.55(s, 2H), 4.97(s, 1H), 4.62(d, J = 11.8 Hz, 1H), 4.38(d, J = 11.9 Hz, 1H), 4.26(s, 1H), 3.99(s, 1H), 3.81(s, 4H); ¹³C NMR (100MHz, CDCl₃) δ : 167.21, 144.44, 143.78, 136.70, 135.01, 134.83, 133.79, 133.25, 129.65, 128.70, 128.67, 128.52, 128.00, 122.77, 118.77, 77.48, 77.16, 76.84, 63.02, 53.69, 51.84, 46.07.

Compound 4r: ¹H NMR (400MHz, CDCl₃) δ: 7.92(d, *J* = 7.4 Hz, 2H), 7.29~7.42(m, 8H), 5.89(s, 2H), 5.02(s, 1H), 4.68(d, *J* = 11.9 Hz, 1H), 4.40(d, *J* = 11.9 Hz, 1H), 4.25(s, 1H), 4.00(s, 1H), 2.44(s, 3H); ¹³C NMR (100MHz, CDCl₃) δ: 190.07, 145.70, 144.04, 135.00, 133.31, 131.51, 129.84, 129.66, 128.60, 128.32, 128.04, 124.89, 77.48, 77.16, 76.84, 63.05, 55.58, 21.87.

Compound 4s: ¹H NMR (400MHz, CDCl₃) δ : 8.55(s, 1H), 7.91~8.03(m, 4H), 7.60~7.70(m, 2H), 7.30~7.44(m, 5H), 6.98(d, *J* = 28.8 Hz, 2H), 6.05(q, *J* = 17.6 Hz, 2H), 4.99~5.02(dd, *J* = 2.6 Hz, 2.6 Hz, 1H), 4.73(d, *J* = 12.6 Hz, 1H), 4.45(d, *J* = 12.6 Hz, 1H), 4.17~4.21(dd, *J* = 2.6 Hz, 2.6 Hz, 1H), 3.94~4.00(dd, *J* = 8.1 Hz, 8.1 Hz, 1H); ¹³C NMR (100MHz, CDCl₃) δ : 144.47, 136.28, 135.07, 133.92, 133.41, 132.48, 131.34, 130.38, 129.87, 129.76, 129.52, 129.35, 128.66, 128.12, 128.08, 127.49, 124.74, 123.36, 77.48, 77.16, 77.02, 76.84, 63.23, 55.61, 51.45; HRMS-ESI calcd for C₂₆H₂₂Cl₂N₅O₂ (M+H)⁺ 506.1145, found 506.1137.

Compound 4t: ¹H NMR (400MHz, CDCl₃) δ : 7.49(s, 1H), 7.33~7.46(m, 6H), 7.26~7.31(m, 2H), 7.00(s, 1H), 6.90(s, 1H), 6.74(d, J = 15.8Hz, 1H), 6.32-6.39(m, 1H), 5.11~5.14(m, 2H), 4.98~5.01(dd, J = 2.6 Hz, 2.6 Hz, 1H), 4.67(d, J = 12.6Hz, 1H), 4.44(d, J = 12.6Hz, 1H), 4.18~4.23(dd, J = 2.6 Hz, 2.7 Hz, 1H), 3.97~4.03(dd, J = 8.0 Hz, 8.0 Hz, 1H); ¹³C NMR (100MHz, CDCl₃) δ : 144.37, 135.73, 135.62, 135.08, 133.91, 133.39, 129.75, 128.89, 128.71, 128.64, 128.09, 126.88, 122.42, 121.83, 77.48, 77.16, 76.99, 76.84, 63.18, 52.50, 51.44; HRMS-ESI calcd for C₂₃H₂₂Cl₂N₅O (M+H)⁺ 454.1196, found 454.1197.

Compound 4u: ¹H NMR (400MHz, CDCl₃) δ : 7.69~7.71(m, 1H), 7.40~7.51(m, 6H), 7.26~7.33(m, 2H), 7.00(s, 1H), 6.91(s, 1H), 5.86(q, *J* = 18.1Hz, 2H), 4.97~5.00(dd, *J* = 2.5 Hz, *J* = 2.5 Hz, 1H), 4.70(d, *J* = 12.6 Hz, 1H), 4.43(d, *J* = 12.6 Hz, 1H), 4.17~4.21(dd, *J* = 2.5 Hz, *J* = 2.6 Hz, 1H), 3.95~4.00(dd, *J* = 8.1 Hz, 8.04 Hz, 1H); ¹³C NMR (100MHz, CDCl₃) δ : 192.77, 144.43, 135.39, 135.11, 133.87, 133.71, 133.42, 131.99, 131.16, 130.42, 129.78, 128.66, 128.12, 127.59, 124.59, 77.48, 77.16, 76.99, 76.84, 63.18, 58.35, 51.50.

Compound 4v: ¹H NMR (400MHz, CDCl₃) δ : 7.90~7.96(m, 3H), 7.47~7.54(m, 4H), 7.32~7.37(m, 2H), 7.22~7.30(m, 2H), 6.97(s, 1H), 6.85(s, 1H), 6.68(s, 1H), 5.89~6.00(q, *J* = 14.8 Hz, 2H), 4.85~4.88((dd, *J* = 2.7 Hz, 2.7 Hz, 1H), 4.54(d, *J* = 12.6 Hz, 1H), 4.32(d, *J* = 12.6 Hz, 1H), 4.07~4.11(dd, *J* = 2.7 Hz, 2.7 Hz, 1H), 3.86~3.92(dd, *J* = 8.0 Hz, 8.0 Hz, 1H); ¹³C NMR (100MHz, CDCl₃) δ : 144.27, 135.01, 134.07, 133.84, 133.35, 131.31, 130.24, 129.83, 129.69, 129.08, 128.62, 128.26, 128.03, 127.41, 126.53, 125.56, 123.02, 122.61, 77.48, 77.16, 76.84, 76.71, 63.02, 52.50, 51.32; HRMS-ESI calcd for C₂₅H₂₂Cl₂N₅O (M+H)⁺ 478.1196, found 478.1191.

Compound 4w: ¹H NMR (400MHz, CDCl₃) δ : 8.03~8.09(m, 1H), 7.42~7.46(m, 3H), 7.28~7.33(m, 2H), 6.98~7.09(m, 3H), 6.91(s, 1H), 5.82(q, *J* = 18.5 Hz, 2H), 4.98~5.01(dd, *J* = 2.6 Hz, 2.4 Hz, 1H), 4.73(d, *J* = 12.6 Hz, 1H), 4.45(d, *J* = 12.6 Hz, 1H), 4.18~4.22(dd, *J* = 2.6 Hz, 2.6 Hz, 1H), 3.96~4.01(dd, *J* = 8.1 Hz, 8.2 Hz, 1H); ¹³C NMR (100MHz, CDCl₃) δ : 187.23, 162.09, 144.43, 138.04, 135.11, 133.90, 133.43, 133.38, 133.34, 133.27, 133.23, 129.79, 129.00, 128.66, 128.13, 124.72, 120.02, 119.14, 113.49, 113.28, 113.25, 105.48, 105.21, 104.96, 77.48, 77.16, 77.03, 76.84, 63.25, 59.05, 58.91, 51.46; HRMS-ESI calcd for C₂₂H₁₈Cl₂F₂N₅O₂ (M+H)⁺ 492.0800, found 492.0799.

1.6 Antifungal activity

The minimum inhibitory concentration (MIC₅₀) of a series of compounds (4a-4w) against *C. albicans* were determined by Microdilution method recommended by Clinical and Laboratory Standards Institute (CLSI) M27-A3. The logarithmic growth stage of *C. albicans* was adjusted to 1×10^5 CFU/mL by using Sand's liquid medium (SDB). All drugs were successively diluted by 5 times of SDB on a 96-well flat plate to achieve a final concentration of 200-0.064 µg/mL. The final concentration of DMSO per well was less than 0.1%. Growth control group (only added fungi), blank control group, single drug group (single drug + fungi) and fluconazole group (FLC+ fungi) were set up. Each compound was arranged in parallel with three multiple pores per concentration, with a final volume of 200 µL. The 96-well culture plate was cultured in an incubator at 30 °C for 24 h, and the OD value was detected at 630 nm with a multifunctional enzyme marker. The experiment was repeated three times.

1.7 Time-sterilization curve test

Logarithmic growth of *C. albicans* was taken and the concentration of SDB was adjusted to 1×10^5 CFU/mL. Control group (Control), FLC group, **4s** low dose group (L, 0.27 µg/mL), **4s** medium dose group (M, 0.53 µg/mL), **4s** high dose group (H, 1.06 µg/mL) were set. The system of each group was 10 mL. The strains and drugs were co-cultured on a constant temperature shaking

table at 150 r/min at 30 °C. After culture for 0, 4, 8, 12, 24, 36, 48 h, the solution of each group was fully mixed, and 200 μ L samples were taken from a super-clear workbench and placed on a 96-well plate. Then the absorbance at 630 nm was determined by enzyme labeling instrument. The remaining fungil solution was sealed with a sterile breathable sealing film and then placed back on the shaking table for culture. Each group is provided with three multiple holes. The time-sterilization curve was drawn with the time point as the horizontal coordinate and the absorbance measured at different time points as the vertical coordinate.

1.8 Cell morphology test

Mycelia induction SD+10% FBS and Spider were used to induce mycelia respectively. The *C. albicans* in the logarithmic growth stage were adjusted into a fungil suspension with a final concentration of 1×10^5 CFU/mL using SD+10% FBS or Spider medium. FLC group, **4s** low dose group (L, 0.27 µg/mL), **4s** medium dose group (M, 0.53 µg/mL), **4s** high dose group (H, 1.06 µg/mL) and control group without drugs were added to the corresponding 24-well plates, respectively, with a total system of 1mL per well and 3 multiple Wells in each group. Then it was cultured in a constant temperature and humidity incubator at 30 °C. After 4 h and 8 h, the 24-well plate was taken out and the mycelium formation was observed under an inverted microscope and photographed.

1.9 Biofilm formation test

The culture medium of *C. albicans* in logarithmic growth stage (RPMI1640+10%FBS) was adjusted to 1×10^5 CFU/mL, which was added to the 24-well plate and cultured in an incubator at 30 °C for 90 min, so that *C. albicans* adhered to the bottom of the culture plate, and the excess culture medium was slowly removed. The FLC group and **4s** low-dose group (L, 0.27 µg/mL), **4s** medium dose group (M, 0.53 µg/mL) and **4s** high dose group (H, 1.06 µg/mL) were added into 1 mL drug-containing and drug-free medium and cultured in an incubator at 30 °C for 24 h. Then, the medium was discarded and stained with crystal violet solution for 30 min, the excess dye was washed 3 times with $1 \times PBS$, and 200 µL PBS was added to observe the formation of *C. albicans* biofilm with an inverted microscope.

1.10 Membrane permeability test

FLC group, **4s** low dose group (L, 0.27 µg/mL), **4s** medium dose group (M, 0.53 µg/mL), **4s** high dose group (H, 1.06 µg/mL) and control group without drugs were set. The concentration of *C*. *albicans* was adjusted to 1×10^5 CFU/mL with SDB, and the corresponding drugs were added to the corresponding groups and cultured at 30 °C and 150 r/min in a constant temperature shaking table for 16-24 hours, then was washed with aseptic PBS and resuspension to 2×10^6 CFU/mL. The strains were then incubated with PI dye (final concentration of 5 µg/mL) at room temperature for 30 min away from light, the dye was removed by centrifugation, and the cells were washed with sterile 1×PBS to remove the excess dye. Pictures were taken under a fluorescence microscope and their fluorescence intensity was measured.

1.11 Strain morphological change experiment

FLC group, **4s** low dose group (L, 0.27 μ g/mL), **4s** medium dose group (M, 0.53 μ g/mL), **4s** high dose group (H, 1.06 μ g/mL) and control group without drugs were set up. The final concentration of Candida albicans with SDB was adjusted to 5×10⁵ CFU/mL. The strains and drugs were placed on a constant temperature shaking table at 150 r/min at 30 °C for 16-24 hours. Cell precipitate was collected by centrifugation, sterilized by 1×PBS for three times, prefixed with precooled 3% paraformaldehyde and 2.5% glutaraldehyde at 4 °C, and then refixed with 1% osmium tetroxide. Then dehydration with acetone step by step; The dehydrating agent and Epon-812 embedding agent were infiltrated in sequence according to the ratio of 3:1, 1:1 and 1:3, respectively. The 60-90 nm ultra-thin sections were prepared by the ultra-thin section mechanism using Epon-812 embedding method. The sections were stained with uranium acetate for 10-15 min and then with lead citrate for 1-2 min at room temperature. Images were then taken under a transmission electron microscope.

1.12 Toxicity test

16HBE cells at logarithmic growth stage were inoculated into 96-well plates, and the cell concentration was adjusted to 1×10^5 CFU/mL with complete medium (RPMI1640 medium plus 10%FBS and 1% double antibody). The cells were cultured at 37 °C in a cell incubator for 24 h, so that the cells were uniformly attached to the bottom of the 96-well plates. After 24 h, the culture medium was removed, and the FLC group, **4s** drug group, growth control group and blank control group were set up. The drug was continuously diluted from 100 µg/mL by 5 times gradient with complete culture medium. Only cells were added to the growth control group, and the blank control group only contained the culture medium. The corresponding drugs were added according to the groups and incubated in the incubator for 48 h. After that, the culture plate was taken out in strict accordance with the instructions of the CCK8 test kit, and appropriate amount of CCK8 working liquid was added to each hole and placed in the incubator for incubation. OD values of each group were detected and cell viability was calculated at 450 nm wavelength by enzyme-labeler.

1.13 Molecular docking study

Firstly, 2D planar structure of the desired compound **4s** was drawn and saved as a mol format file. Then the three-dimensional crystal structure of CYP51 in PDB format was obtained from PDB database (https://www.rcsb.org/), and 5TL8 fragment was selected as the intended target protein of the synthesized drug. The protein was hydrotreated with water removal at Discovery Studio and saved as a PBD file. The software was used to dock compound **4s** with the target protein 5TL8, formed and visualized the score result. Finally, the interaction diagram of the docking site between compound and target protein was given.

2. NMR spectra

3. HRMS spectra

4. HPLC spectra

面积百分比报告

排序	:	信号	
乘积因子		:	1.0000
稀释因子		:	1.0000
内标使用乘积因子和和	希释因子	31	

信号 1: DAD1 C, Sig=210,4 Ref=off

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	%
1	2.006	BB	0.1498	100.69322	9.18968	0.3299
2	3.188	BB	0.0563	34.33208	9.47926	0.1125
3	21.077	BB	0.1658	117.58685	10.41125	0.3853
4	22.722	BV E	0.1635	68.66209	6. 48532	0.2250
5	23.148	VB R	0.4903	2.99671e4	852.08276	98.1908
6	26.806	BB	0. 2051	158.75778	11.08436	0. 5202
7	28.463	BV	0.1364	39.28884	4.38961	0.1287
8	28.617	VB	0.1521	32.84701	3. 19162	0.1076
总量	:			3.05193e4	906.31386	

信号 1: DAD1 C, Sig=210,4 Ref=off

峰	保留时间 类型	峰宽	峰面积	峰高	峰面积
#	[min]	[min]	[mAU*s]	[mAU]	%
1	1.902 BB	0.1054	243. 18951	31.73482	1.0342
2	2.800 BV E	0.1651	12.32899	1.00521	0.0524
3	3.022 VB R	0.0558	22.03857	6.15014	0.0937
4	19.076 BB	0.2045	16.96358	1.29784	0.0721
5	20.690 BB	0.1538	20.87162	2.10325	0.0888
6	21.182 BV R	0.4750	2.25898e4	663.77087	96.0689
7	22.863 VV E	0. 1247	54.72068	6.46918	0.2327
8	23.063 VB E	0.1748	134.81682	11.49611	0.5733
9	24.614 BV	0.3909	102.33519	3.48204	0.4352
10	25.108 VB	0.2959	70.04793	3.32298	0.2979
11	26.676 BB	0.2206	151.84813	9.70290	0.6458
12	28.365 BB	0.1109	14.60383	2.10696	0.0621
13	30.733 BBA	0.4529	80. 59692	2.33385	0.3428
总量	:		2.35141e4	744.97614	

信号 1: DAD1 C, Sig=210,4 Ref=off

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	%
	·					
1	1.970	BB	0.1225	241.85104	27. 52695	0.2302
2	3.092	BB	0.0595	51.01194	13.66936	0.0485
3	8.374	BB	0.1745	46.37060	3. 79527	0.0441
4	10. 487	BB	0.1228	9.54208	1.20019	9.081e-3
5	5 15.406	BB	0.1646	49.63017	4.36712	0.0472
6	18.144	BB	0.1486	1738.47498	176.93298	1.6544
7	18.953	BB	0.1250	14.11590	1.81018	0. 0134
8	19.500	BV E	0.1904	274.25296	21.84788	0.2610
9	19.866	VV R	0.3784	1.00515e5	3365.65088	95.6545
10	22.612	VB E	0.1907	81.96693	6.43006	0.0780
11	23.161	BV	0.1445	131.08615	14.09306	0.1247
12	23.457	VV R	0.3714	1436.65112	56.73995	1.3672
13	24.189	VB E	0.1354	35. 37079	4.15201	0.0337
14	24.779	BB	0. 23 4 3	88.32639	5.19716	0.0841
15	26.744	BB	0.2528	222.69290	12.09463	0.2119
16	28.429	BV	0.1494	58.93422	5.95963	0.0561
17	28.591	VB	0.2246	86.05263	5. 43816	0.0819

总量:

1.05081e5 3726.90548

信号 1: DAD1 C, Sig=210,4 Ref=off

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.987	BB	0.1365	95. 37249	9.54862	0.3486
2	3.101	BB	0.0579	22.85099	6.36651	0.0835
3	21.682	BB	0.1368	330.99994	36.84132	1.2099
4	22.642	BB	0.1602	57. 51737	5.58180	0.2102
5	23.170	BV E	0.1761	133. 35530	11.26667	0.4874
6	23.666	VB R	0.4627	2.64372e4	785.39117	96. 6336
7	26.753	BB	0.1966	123.23627	9.06457	0.4505
8	28.424	BV	0.1432	43.25673	4.45755	0.1581
9	28.581	VV	0.2364	72.90102	4.20256	0.2665
10	29.109	VB	0.2314	29.76090	1.93501	0.1088
11	29.499	BBA	0.1528	11.73164	1.13261	0.0429
总量	:			2.73582e4	875. 78838	

内标使用乘积因子和稀释因子

信号 1: DAD1 C, Sig=210,4 Ref=off

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	%
					-	
	1 1.946	BV	0.0722	36.76105	7.91099	0.0693
	2 2.058	VB	0.1342	91.71786	9.36775	0.1730
	3 3.082	BB	0.0539	23.95029	6.995 <mark>8</mark> 1	0.0452
	4 15.386	BB	0.1260	9.54838	1.16015	0.0180
	5 21.396	BB	0.1447	482. 19165	50.81166	0.9095
		DD	0 1070	. 71 00045	F 40000	0 1040
	6 22.577	BB	0. 1976	71.22945	5.48082	0.1343
	7 23.310	BB	0.4339	5.20481e4	1641.80090	98. 1666
	8 26.714	BB	0.1870	119.05479	9.31990	0.2245
	9 28.401	BV	0.2831	121.66861	5.69952	0.2295
1	0 29.093	VB	0.2007	15.94857	1.23471	0.0301

总量:

5.30201e4 1739.78221

信号 1: DAD1 C, Sig=210,4 Ref=off

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	%
	-	-				
1	1.971	BB	0.1293	229.72830	24. 52172	0.5850
2	2 3.097	BB	0.0564	50.33078	13.84075	0.1282
3	10.483	BB	0.1234	11.64093	1.45439	0.0296
4	15.407	BB	0.1629	46.38844	4.13454	0.1181
5	5 19.479	BB	0.1324	218.63318	25.39623	0.5568
6	5 20.890	BV E	0. 2311	146.55904	8.94662	0.3732
7	21.407	VV R	0.5110	3.81503e4	1023.28461	97.1573
8	3 23, 120	VB E	0.1539	80.05579	8.06092	0.2039
9	26.484	BV	0.1763	27.14244	2.39301	0.0691
10	26.737	VB	0.2170	156. 55794	10.20642	0.3987
11	28, 421	BB	0.2570	149.19028	7.87405	0.3799

总量:

3.92666e4 1130.11324

47

I J I. DIDI C, DIS LIV, I NOI OI.	信号	1:	DAD1	С,	Sig=21	0,4	Ref=oft
-----------------------------------	----	----	------	----	--------	-----	---------

峰	保留时间	类	型	峰宽	峰面积	峰高	峰面积
#	[min]			[min]	[mAU*s]	[mAU]	%
	-						
1	1.994	BV	R	0.1230	539.84772	59.95606	0.9429
2	3.006	BB		0.0603	116.17842	30. 56993	0.2029
2	3 4.4 78	BB		0.2278	31, 40068	1.95027	0.0548
4	7.899	BB		0.2225	84.46083	5.01549	0.1475
5	9.548	BB		0.1289	22.08710	2.60621	0.0386
						5	
6	5 13.122	BB		0.1663	16. 48894	1.37095	0.0288
1	13.555	BB		0.1066	9.67875	1.40069	0.0169
8	16.248	BB		0.1177	10.48813	1.33396	0.0183
9	17.104	BB		0.1012	8.75416	1.35743	0.0153
10	17.369	BB		0.1136	26.90931	3. 58354	0.0470
11	18.104	BB		0.1304	224.03717	26.04434	0.3913
12	2 19.115	VB	R	0.2285	42.61397	2.91511	0.0744
13	19.918	BV	R	0.4536	5.49551e4	1662.75623	95.9842
14	22.008	VV	Е	0.1032	68.70119	9.87467	0.1200
15	5 22.143	VB	Е	0.1242	99.94233	12.37137	0.1746
16	5 22.542	BB		0.1438	238.67291	24. 90069	0. 4169
17	23.203	BV		0.3662	334. 31302	12.57497	0.5839
18	3 23.828	VB		0.2109	88.85822	6.28687	0.1552
19	25.043	BB		0.1931	48.92569	3. 58842	0.0855
20	25.629	VB	R	0.1957	62.81178	5.17077	0.1097
21	26.633	BV		0.1637	140.07114	13.00008	0.2446
22	26.912	VB		0.1821	59.00170	4.58585	0.1031
23	3 28.332	BB		0.1147	24.95971	3. 52241	0.0436

5.72543e4 1896.73629