Supporting Information

Exploring medium and long arm extensions of 1,2,4-triazole derivatives as

Candida albicans 14a-demethylase (CYP51) inhibitors

Marwa Alsulaimany, Faizah A. Binjubair, Esra Tatar, Diane E. Kelly, Steven L. Kelly,

Andrew G. Warrilow, Mikhail V. Keniya, Brian C. Monk, Josie E. Parker and Claire

Simons

S2	Figure S1 (part1) . <i>CaCYP51 type II azole binding difference spectra</i> . Type II difference spectra are shown for the binding of 7a , 7b , 9a , 9b , 11b and FLZ with 2.5 µM native CaCYP51 in quartz semi-microcuvettes of 1 cm light path. Each azole titration was performed in triplicate although only one replicate is shown.
S3	Figure S1 (part2) . <i>CaCYP51 type II azole binding difference spectra</i> . Type II difference spectra are shown for the binding of 12b , 13a , 13b , 14b and FLZ with 2.5 μM native CaCYP51 in quartz semi-microcuvettes of 1 cm light path. Each azole titration was performed in triplicate although only one replicate is shown.
S4	Figure S2 . <i>CYP51 azole saturation curves</i> . Azole ligand binding saturation curves derived from the type II difference spectra with 2.5 µM native CaCYP51. Each azole titration was performed in triplicate although only one replicate is shown.
S5-S7	Figure S3. Comparing ligand-protein complex stability through protein-ligand RMSD over 200 ns MD simulation for exemplar compounds 7a , 7b , 9a , 9b , 11a , 11b , 12a , 12b , 13a , 13b , 14a and 14 b in the wild- type CaCYP51. Ligand RMSD in red and protein RMSD in blue.
S8-S11	Figure S4. Comparing the binding profile showing haem binding over 200 ns MD simulation for exemplar compounds 7a , 7b , 9a , 9b , 11a , 11b , 12a , 12b , 13a , 13b , 14a and 14b in wild- type CaCYP51. Interactions that occur more than 30.0% of the simulation time in the selected trajectory (0.00 through 200 ns) are shown.
S12-S15	Figure S5. Protein-ligand interactions of final frame after 200 ns MD simulation for enantiomers of 7a, 7b, 9a, 9b, 11a, 11b, 12a, 12b, 13a, 13b, 14a and 14b using wild type CaCYP51.
S16-22	Figure S6 . 3D images illustrating binding position, haem Fe ³⁺ -triazole binding distance and key binding interactions of protein-ligand interactions complexes of final frame after 200 ns MD simulation for enantiomers of 7a , 7b , 9a , 9b , 11a , 11b , 12a , 12b , 13a , 13b , 14a and 14b using wild type CaCYP51.
S23-S27	Procedures and characterisation of intermediate amines 5 and 10
S28	Figure S7. ¹ H NMR and ¹³ C NMR and HPLC trace of 6a
S29	Figure S8. ¹ H NMR and ¹³ C NMR and HPLC trace of 6b
S30	Figure S9. ¹ H NMR and ¹³ C NMR and HPLC trace of 7a
S31	Figure S10. ¹ H NMR and ¹³ C NMR and HPLC trace of 7b
S32	Figure S11. ¹ H NMR and ¹³ C NMR and HPLC trace of 11a
S33	Figure S12. ¹ H NMR and ¹³ C NMR of 11b
S34	Figure S13. ¹ H NMR and ¹³ C NMR of 12a
S35	Figure S14. ¹ H NMR and ¹³ C NMR of 12b
S36	Figure S15. ¹ H NMR and ¹³ C NMR of 13a
S37	Figure S16. ¹ H NMR and ¹³ C NMR of 13b
S38	Figure S17. ¹ H NMR and ¹³ C NMR and HPLC trace of 14a
S39	Figure S18. ¹ H NMR and ¹³ C NMR and HPLC trace of 14b
0.10	

BINDING AFFINITY DATA

Figure S1 (part1). *CaCYP51 type II azole binding difference spectra*. Type II difference spectra are shown for the binding of **6a**, **6b**, **7a**, **7b**, **11b** and FLZ with 2.5 µM native CaCYP51 in quartz semi-microcuvettes of 1 cm light path. Each azole titration was performed in triplicate although only one replicate is shown.

Figure S1 (part2). *CaCYP51 type II azole binding difference spectra*. Type II difference spectra are shown for the binding of **12b**, **13a**, **13b**, **14b** and FLZ with 2.5 µM native CaCYP51 in quartz semi-microcuvettes of 1 cm light path. Each azole titration was performed in triplicate although only one replicate is shown.

Figure S2. *CYP51 azole saturation curves*. Azole ligand binding saturation curves derived from the type II difference spectra with 2.5 µM native CaCYP51. Each azole titration was performed in triplicate although only one replicate is shown.

COMPUTATIONAL DATA

Figure S3. Comparing ligand-protein complex stability through protein-ligand RMSD over 200 ns MD simulation for exemplar compounds **6a, 6b, 7a, 7b, 11a, 11b, 12a, 12b, 13a, 13b, 14a** and **14b** in the wild- type CaCYP51. Ligand RMSD in red and protein RMSD in blue.

Figure S4 Comparing the binding profile showing haem binding over 200 ns MD simulation for exemplar compounds **6a, 6b, 7a, 7b, 11a, 11b, 12a, 12b, 13a, 13b, 14a** and **14b** in wild- type CaCYP51. Interactions that occur more than 30.0% of the simulation time in the selected trajectory (0.00 through 200 ns) are shown.

Figure S5. Protein-ligand interactions of final frame after 200 ns MD simulation for enantiomers of 6a, 6b, 7a, 7b, 11a, 11b, 12a, 12b, 13a, 13b, 14a and 14b using wild type CaCYP51.

	Cmpd	3D CaCYP51-ligand complex after 200ns MD	Fe-haem	Key interactions
--	------	--	---------	------------------

	simulation	distance (Å)	
<i>R</i> -6a	Phe380 Tyr13 Tyr132 Tyr132 He304	2.66*	Amide - H_2O mediated H-bond Leu121 and Tyr 132 Acetyl <i>benzene</i> ring – π - π stacking Tyr118 and Phe380 O <i>H</i> - H_2O H-bond
S-6	Met508 Phe126 Phe380 Tyr118 Tyr132 Giy308 2.54	2.54	OH and amide NH – H ₂ O mediated with haem O <i>H</i> - Tyr132 H- bond Cl- <i>benzene</i> - π-π face-edge Tyr132
<i>R</i> -6b	Phe23 His120 Met508 Phe380 Tyr132 Gly307 Gly308	2.88*	Amide C=O and OH – H ₂ O H-bond Acetyl C=O – His120 H-bond Acetyl CH ₃ – VdW Phe233
<i>S</i> -6b	Phe380 Tvr132 Giy307 Giy308 2.43	2.43	Acetyl <i>benzene</i> ring – π - π stacking Tyr118 and Phe380 diCl- <i>benzene</i> - π - π face-edge Tyr132 O <i>H</i> - Tyr132 H- bond

<i>R</i> -7a	Met508 Phe380 Ser378 Thr311 251 251	2.51	Thiazole S – Ser378 H-bond Amide NH-Tyr118 (VdW cation/π) OH-Met508 H- bond Triazole – Thr311 VdW
<i>S</i> -7a	Phe380 Tyr132 Thr311 Gly307	2.55	Thiazole – Tyr118 π - π stacking OH-Tyr132 H- bonding Cl-benzene – π - π face-edge Tyr132
<i>R</i> -7b	Phe380 Ser378 Tyr118 Gily307 Gily308	2.74*	H-bonding interactions H ₂ O and OH and amide NH and C=O Thiazole S – Ser378
<i>S</i> -7b	Het508 Phe380 Leu376 Thr311 2,49	2.49	Thiazole – Tyr118 π-π stacking and Leu376 VdW Triazole – Thr311 VdW Amide NH – Met508 H-bond

<i>R</i> -11a	His377 Ser378 Phe380 Tyr118 Hie304 His377 Ile304	4.55*	Thiourea 2 x NH – Ser378 H-bonding Central aryl ring – Tyr118 π-π face- edge
<i>S</i> -11a	Leul21 Fyr64 Ser378 Tyr118 Tyr132 Giy303 He304	2.92	Thiourea 2 x NH – Ser378 H-bonding C=S - Tyr64 H- bonding Amide NH – Tyr118 VdW Central aryl ring – Tyr118 π - π stacking OH- Tyr132 H- bond
<i>R</i> -11b	Gily65 Ser507 Met508 Phe380 Tyr118 Thr311 Tyr132 2.51	2.51	Thiourea 2 x NH – Ser506 and Ser507 H-bonding Cl- <i>benzene</i> – Ser506 VdW Triazole – Thr311 VdW DiCl-benzene – Tyr132 π-π face- edge

<i>S</i> -11b	Leu87 HI5310 Phe380 Tyr18 HE131 5.69	5.69*	Thiourea S and NH- H2O bondingOH – Tyr132 H- bondTriazole – Tyr132VdW2,4-diCl benzene4-Cl group bonding with His310Central benzene ring – Phe380 π-π
<i>R</i> -12a	Ser506 Tyr64 His377 Ser378 Phe380 Tyr18 Tyr18 Tyr132 2.75	2.75*	stacking Urea 2 x NH – Ser378 and His377 direct H-bonding, Met508 H ₂ O mediated H- bonding O <i>H</i> -Tyr132
<i>S</i> -12a	Ser506 Tyr64 His377 Ser378 Ue304 He304 He304 He304 He304	2.47	Urea 2 x NH – Ser378 and His377 direct H-bonding OH- Tyr132 H- bond Amide NH – water mediated with haem Urea and amide C=O bond with H_2O

<i>R</i> -12b	Ser506 Thr229 Phe380 Wet508 Ser378 Gly303 Tyr118 Ile304	2.93*	Urea 2 x NH – Ser378 direct H- bonding Urea C=O - H ₂ O mediated H- bonding Thr229
<i>S</i> -12b	Ala61 Pro230 Met508 Tyr132 Giy303 Ie304 Ie304	2.51	Urea 2 x NH – H ₂ O mediated with Ser507 Urea C=O - H ₂ O mediated H- bonding Pro230 DiCl-benzene – Tyr132 π - π face- edge Central benzene ring – Phe380 π - π stacking Cl-benzene – Tyr64 π - π face- edge
<i>R</i> -13a	Phe233 Phe228 His310 Gly303 Tyr132 Ile304	No interaction	Amide CONH – His310 H ₂ O mediated H-bond Triazole N – Tyr132 H ₂ O mediated H-bond Amide Cl-benzene – Phe380 and Phe233 π - π stacking Central benzene – Tyr118 and Phe228 π - π stacking

S-13a	Leu87	2.71	Central amide NH – Met508 H-bond
	MetS08		End amide NH –
			Ser378 H ₂ O
	His377 Tyr118 Tyr129 Giv303		mediated H-bond
	Ser378 Phe380		Central <i>benzene</i> –
			Phe380 π-π
	2.71 lie304		stacking
			O <i>H</i> - haem H ₂ O
			mediated H-bond
<i>R</i> -13b	Ser507	No	Triazole and
		Interaction	- Ser378 H ₂ O
	His310		mediated H-bond
	Phe380		
			mediated H-bond
	Ser378		
			DiCl-benzene -
	lle304		naem vow and Tyr132 π - π
			stacking
			End amide NH
			Phe380 cation-arvl
			bond
<i>S</i> -13b		2.27	Central amide NH
	Leu88		- HISSID H ₂ O mediated H-bond
	Leu121		inculated II conta
			End amide NH –
	His310		mediated H-bond
	Tyr132		
	Phe380 Gly303		OH - haem and $Tyr132 H_2O$
	Ser378		mediated H-bond
	PRO A		
	2.27		
<i>R</i> -14a	Leu121	2.49	$SO_2NH - H_2O$
			mediated H-
	Met508 Ala117		bonding with
			Met508
	Phe380 Phe380 Giy303		
			π - π stacking
	Leuszo		Tyr132 and Cl-
			benzene rings
	2.49		
	300		
1			1

*Not perpendicular

Figure S6. 3D images illustrating binding position, haem Fe³⁺-triazole binding distance and key binding interactions of protein-ligand interactions complexes of final frame after 200 ns MD simulation for enantiomers of **6a**, **6b**, **7a**, **7b**, **11a**, **11b**, **12a**, **12b**, **13a**, **13b**, **14a** and **14b** using wild type CaCYP51.

Procedures and characterisation of synthesised compounds:

General procedure for the preparation of triazole derivatives (2).

To a cooled solution of acetophenone derivatives (1) (15.87 mmol) in acetone (75 mL) was added 1,2,4-triazole (31.74 mmol) and K_2CO_3 (19.04 mmol). The reaction was stirred vigorously at 0 °C for 30 min then at room temperature overnight. The reaction mixture was filtered to remove inorganics (KCI) and the filtrate concentrated under reduced pressure. The residue obtained was extracted between EtOAc (100 mL) and washed with H₂O (3 x 50 mL), the combined aqueous extracts were back extracted with EtOAc (50 mL), then the combined organic layers dried (MgSO4) and concentrated under reduced pressure. The deep yellow residue was triturated with Et₂O to remove remaining acetophenone, then the yellow solid recrystallised from EtOH or purified by petroleum ether – EtOAc gradient column chromatography.

1-(4-Chlorophenyl)-2-(1-H-1,2,4-triazol-1-yl)ethan-1-one (2a, $R^1 = CI$, $R^2 = H$). Prepared from 2',4'dichloroacetophenone (**1a**, $R^1 = 4$ -Cl) (3.0 g, 15.87 mmol). Product obtained as a white crystalline solid, yield 1.79 g (51%). M.p. 148-150 °C (149-150 °C lit [1]). TLC (petroleum ether-EtOAc 1:2 v/v), Rf = 0.35. ¹H NMR (DMSO-*d*₆): δ 8.51 (s, 1H, triazole), 8.07 (d, *J* = 8.8 Hz, 2H, Ar), 8.03 (s, 1H, triazole), 7.69 (d, *J* = 8.7 Hz, 2H, Ar), 6.00 (s, 2H, CH₂triazole). ¹³C NMR (DMSO-*d*₆): δ 192.22 (C, C=O), 151.79 (CH, triazole), 146.07 (CH, triazole), 139.55 (C, *C*-CI), 133.37 (C, Ar), 130.52 (2 x CH, Ar), 129.59 (2 x CH, Ar), 55.68 (CH₂-triazole).

1-(2,4-Dichlorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethan-1-one (**2b**, **R**¹ = **Cl**, **R**² = **Cl**). Prepared from 2,2',4'trichloroacetophenone (**1b**, R¹= 2,4-di-Cl) (1.00 g, 4.48 mmoL). Product obtained as a pale-yellow solid, yield 0.85 g (74%). M.p. 100-102 °C (115-116 °C lit [2]). TLC (petroleum ether-EtOAc 1:2 v/v), R*f* = 0.21. ¹H NMR (DMSO-*d*₆): δ 8.54 (s, 1H, triazole), 8.03 (s, 1H, triazole), 7.96 (d, *J* = 8.4 Hz, 1H, Ar), 7.82 (d, *J* = 2.0 Hz, 1H, Ar), 7.65 (dd, *J* = 2.1, 8.4 Hz, 1H, Ar), 5.85 (s, 2H, CH₂-triazole). ¹³C NMR (DMSO-*d*₆): δ 193.90 (C, C=O), 152.00 (CH, triazole), 146.04 (CH, triazole), 137.85 (C, Ar), 134.04 (C, C-Cl), 132.51 (C, C-Cl), 131.86 (CH, Ar), 131.00 (CH, Ar), 128.16 (CH, Ar), 57.59 (CH₂-triazole).

General procedure for the formation of the epoxide (3).

To a solution of 1-(arylphenyl)-2-(1*H*-1,2,4-triazol-1-yl)ethanone (**2**) (5 mmoL) in toluene (11 mL/mmoL) was added trimethylsulfoxonium iodide (TMSOI) (10 mmoL) followed by 20% aqueous NaOH (18.9 mmoL) and the reaction heated at 60 °C for 6 h then rt o/n. Upon completion, the reaction was diluted with H_2O (30 mL) and EtOAc (30 mL). The aqueous layer was extracted with EtOAc (3 x 20 mL), then the combined organic extracts washed with H_2O (2 x 30

mL), sat. aq. NaCl (20 mL), dried (MgSO₄) and concentrated to give the epoxide which was used in the next step without further purification.

1-((2-(4-Chlorophenyl)oxiran-2-yl)methyl)-1H-1,2,4-triazole (3a, $R^1 = CI$, $R^2 = H$). Prepared from 1-(4-chlorophenyl)-2-(1-*H*-1,2,4-triazol-1-yl)ethan-1-one (**2c**, $R^1 = 4$ -Cl) (1.25 g, 5.66 mmoL). Product obtained as a light-yellow oil, which became dark orange on standing, yield 1.33 g (100 %). TLC (petroleum ether – EtOAc 1:2 v/v), Rf = 0.28. ¹H NMR (DMSO-*d*₆): δ 8.39 (s, 1H, triazole), 7.91 (s, 1H, triazole), 7.40 (s, 4H, Ar), 5.06 (d, *J* = 15.0 Hz, 1H, C*Ha*Hb-triazole), 4.64 (d, *J* = 15.0 Hz, 1H, CHa*Hb*-triazole), 3.04 (d, *J* = 4.9 Hz, 1H, OC*Ha*Hb), 2.87 (d, *J* = 4.9 Hz, 1H, OCHa*Hb*). ¹³C NMR (DMSO-d₆): δ 151.79 (CH, triazole), 145.40 (CH, triazole), 136.28 (C, Ar), 131.19 (C, Ar), 128.78 (2 x CH, Ar), 128.56 (2 x CH, Ar), 58.72 (*C*-epoxide), 53.99 (*C*H₂-triazole), 52.82 (*C*H₂-O).

1-((2-(2,4-Dichlorophenyl)oxiran-2-yl)methyl)-1H-1,2,4-triazole (**3b**, **R**¹ = **CI**, **R**² = **CI**). Prepared from 1-(2,4dichlorophenyl)-2-(1*H*-1,2,4-triazol-1-yl)ethan-1-one (**2b**, R¹= 2,4-diCl) (1.88 g, 7.32 mmoL). Product obtained as a pale yellow to orange oil, yield 1.96 g (99 %). TLC (petroleum ether – EtOAc 1:2 v/v), R*f* = 0.38. ¹H NMR (DMSO-*d*₆): δ 8.40 (s, 1H, triazole), 7.91 (s, 1H, triazole), 7.67 (d, *J* = 2.1 Hz, 1H, Ar), 7.36 (dd, *J* = 2.1, 8.3 Hz, 1H, Ar), 7.12 (d, *J* = 8.4 Hz, 1H, Ar), 4.87 (d, *J* = 15.0 Hz, 1H, C*H*_aH_b-triazole), 4.55 (d, *J* = 14.9 Hz, 1H, CH_aH_b-triazole), 3.13 (d, *J* = 4.8 Hz, 1H, COC*H*_aH_b), 2.94 (d, *J* = 4.75 Hz, 1H, COCH_aH_b). ¹³C NMR (DMSO-*d*₆): δ 151.92 (CH, triazole), 145.50 (CH, triazole), 134.44 (C, Ar), 134.23 (C, C-Cl), 133.58 (C, C-Cl), 131.41 (CH, Ar), 129.15 (CH, Ar), 127.80 (CH, Ar), 58.95 (*C*-epoxide), 52.91 (*C*H₂-triazole), 52.24 (*C*H₂-O).

General procedure for the preparation of the azide derivatives (4).

To a solution of epoxide derivative (**3**) (1.0 meq) in dry DMF (2.7 mL/mmoL) was added NaN₃ (1.95 meq) and NH₄Cl (1.2 meq) and the reaction heated at 60 °C for 2 h then rt o/n. After cooling to room temperature sat. aq. NaHCO₃ (50 mL/meq) was added and the reaction extracted with EtOAc (50 mL). The aqueous layer was back extracted with EtOAc (25 mL), then the combined organic layers washed with H₂O (25 mL), sat. aq. NaCl (25 mL), dried (MgSO₄) and concentrated under reduced pressure. The crude product was purified by gradient column chromatography.

1-Azido-2-(4-chlorophenyl)-3-(1H-1,2,4-triazol-1-yl)propan-2-ol (**4a**, **R**¹ = **Cl**, **R**² = **H**)). Prepared from 1-((2-(4-chlorophenyl)oxiran-2-yl)methyl)-1*H*-1,2,4-triazole (**3a**, R¹= 4-Cl) (1.33 g, 5.64 mmoL). Product obtained as a thick yellow syrup after purification by gradient column chromatography (petroleum ether – EtOAc to 40:60 v/v), yield 1.02 g (65 %). TLC (petroleum ether – EtOAc 1:2 v/v), R*f* = 0.45. ¹H NMR (DMSO-*d*₆): δ 8.22 (s, 1H, triazole), 7.85 (s, 1H, triazole), 7.43 (d, *J* = 8.8 Hz, 2H, Ar), 7.37 (d, *J* = 8.8 Hz, 2H, Ar), 6.14 (s, 1H, O*H*), 4.54 (dd, *J* = 14.3, 22.0 Hz, 2H, C*H*₂-triazole), 3.65 (dd, *J* = 12.9, 22.6 Hz, 2H, C*H*₂-N₃). ¹³C NMR (DMSO-*d*₆): δ 151.27 (CH, triazole), 145.59 (CH, triazole), 141.06 (C, Ar), 132.54 (C, C-Cl), 128.32 (2 x CH, Ar), 128.24 (2 x CH, Ar), 75.95 (C, C-OH), 57.88 (*CH*₂-triazole), 56.35 (*CH*₂-N₃). HRMS (ESI), *m*/z. calcd for C₁₁H₁₁ClN₆O ([M + H]⁺), 279.0761; found, 279.0761. HPLC (Method B): 98.99%, **R**, = 4.94 min.

1-Azido-2-(2,4-dichlorophenyl)-3-(1H-1,2,4-triazol-1-yl)propan-2-ol (4b, R¹ = Cl, R² = Cl). Prepared from 1-((2-(2,4-dichlorophenyl)oxiran-2-yl)methyl)-1H-1,2,4-triazole (3b, R¹ = 2,4-diCl) (1.94 g, 7.17 mmoL). Product obtained as a

thick yellow syrup after purification by gradient column chromatography (petroleum ether – EtOAc to 40:60 v/v), yield 1.48 g (66 %). TLC (Petroleum ether – EtOAc 1:2 v/v), R*f* = 0.31. ¹H NMR (DMSO-*d*₆): δ 8.32 (s, 1H, triazole), 7.79 (s, 1H, triazole), 7.59 (t, *J* = 2.4 Hz, 2H, Ar), 7.39 (dd, *J* = 2.2, 8.7 Hz, 1H, Ar), 6.47 (s, 1H, OH), 4.85 (d, *J* = 14.5 Hz, 1H, C*Ha*Hb-triazole), 4.69 (d, *J* = 14.5 Hz, 1H, CHa*Hb*-triazole), 4.10 (d, *J* = 13.2 Hz, 1H, C*Ha*Hb-N₃), 3.74 (d, *J* = 13.2 Hz, 1H, CHa*Hb*-N₃). ¹³C NMR (DMSO-*d*₆): δ 151.27 (CH, triazole), 145.66 (CH, triazole), 137.34 (C, Ar), 133.72 (C, *C*-Cl), 131.73 (CH, Ar), 131.54 (C, *C*-Cl), 130.46 (CH, Ar), 127.61 (CH, Ar), 76.78 (C, *C*-OH), 55.75 (CH₂- triazole), 53.98 (CH₂-N₃). HRMS (ESI), *m*/z. calcd for C₁₁H₁₀Cl₂N₆O ([M + H]⁺), 313.0371; found, 313.0373. HPLC (Method B): 99.27%, R_t = 5.03 min.

General procedure for the preparation of the free amines (5).

To a solution of azide derivative (**4**) (1.0 meq) in dry THF (5 mL) was added triphenylphosphine (1.15 meq) and the reaction stirred at room temperature for 1 h. H_2O (11.0 meq) was added and the reaction heated at 60 °C for 4 h. The reaction was concentrated under reduced pressure and to the resulting residue 2M aqueous HCI (20 mL) was added and the reaction stirred at room temperature for 20 min before extracting with CH_2CI_2 (4 x 20 mL) to remove excess Ph_3P and triphenylphosphine oxide by-product. To the aqueous layer was added 1 M aqueous NaOH until basic pH; the free amine was then extracted with EtOAc (2 x 50 mL). The organic layers were combined, dried (MgSO₄) and concentrated under reduced pressure.

1-Amino-2-(4-chlorophenyl)-3-(1H-1,2,4-triazol-1-yl)propan-2-ol (5a, R¹ = CI, R² = H)). Prepared from 1-azido-2-(4-chlorophenyl)-3-(1H-1,2,4-triazol-1-yl)propan-2-ol (**4a**, R¹ = 4-Cl) (0.514 g, 1.84 mmoL). Product obtained as a white solid on standing overnight, yield 0.36 g (77%). M.p. 94-96 °C. TLC (CH₂Cl₂-MeOH 9:1 v/v), R*f* = 0.4. ¹H NMR (DMSO-*d*₆): δ 8.20 (s, 1H, triaz), 7.82 (s, 1H, triaz), 7.40 (d, *J* = 8.8 Hz, 2H, Ar), 7.33 (d, *J* = 8.8 Hz, 2H, Ar), 5.54 (brs, 2H, N*H*₂ partially exchanged), 4.50 (dd, *J* = 14.3, 19.3 Hz, 2H, C*H*₂-triazole), 2.81 (s, 2H, C*H*₂-NH₂). (OH exchanged so not observed). ¹³C NMR (DMSO-*d*₆): δ 150.93 (CH, triazole), 145.30 (CH, triazole), 142.71 (C, Ar), 131.91 (C, C-Cl), 128.28 (2 x CH, Ar), 128.16 (2 x CH, Ar), 75.92 (C, C-OH), 56.51 (CH₂-triazole), 50.00 (CH₂-NH₂). HRMS (ESI), *m/z*. calcd for C₁₁H₁₃ClN₄O ([M + H]⁺), 253.0856; found, 253.0855. HPLC (Method B): 97.62%, R₁ = 4.85 min.

1-Amino-2-(2,4-dichlorophenyl)-3-(1H-1,2,4-triazol-1-yl)propan-2-ol (5b, R¹ = CI, R² = CI). Prepared 1-azido-2-(2,4-dichlorophenyl)-3-(1*H*-1,2,4-triazol-1-yl)propan-2-ol (**4b**, R¹ = 2,4-diCl) (1.45 g, 4.62 mmoL). Product obtained as a white solid, yield 0.80 g (60 %). M.p. 70-72 °C. TLC (CH₂Cl₂-MeOH 9:1 v/v), R*f* = 0.48. ¹H NMR (DMSO-*d*₆): δ 8.29 (s, 1H, triazole), 7.72 (s, 1H, triazole), 7.53 (t, *J* = 2.1 Hz, 1H, Ar), 7.52 (s, 1H, Ar), 7.30 (dd, *J* = 2.2, 8.6 Hz, 1H, Ar), 5.80 (brs, 1H, OH), 4.87 (d, *J* = 14.3 Hz, 1H, CHaHb-triazole), 4.50 (d, *J* = 14.4 Hz, 1H, CHaHb-triazole), 3.21 (d, *J* = 13.5 Hz, 1H, CHaHb-NH₂), 1.55 (brs, 2H, NH₂). ¹³C NMR (DMSO-d₆): δ 150.88 (CH, triazole), 145.37 (CH, triazole), 139.27 (C, Ar), 132.97 (C, C-CI), 131.76 (CH, Ar), 131.58 (C, C-CI), 130.36 (CH, Ar), 127.28 (CH, Ar), 76.47 (C, C-OH), 54.36 (CH₂-triazole), 47.04 (CH₂-NH₂).). HRMS (ESI), *m*/z. calcd for C₁₁H₁₂Cl₂N₄O ([M + H]⁺), 287.0466; found, 287.0467. HPLC (Method B): 99.33%, R₁ = 4.78 min.

General procedure for the preparation of the nitro intermediates derivatives (9).

A solution of CH_2Cl_2 (7.5 mL) and saturated aqueous NaHCO₃ (15 mL) were stirred vigorously and chilled in an ice bath. 4-NitroBenzoyl chloride (8) (4.37 mmoL) was added, stirred until all the solid dissolved, followed by the free amine derivatives (5) (2.91 mmoL). Stirring was continued while warming to room temperature over a period of 2 h. The reaction mixture was evaporated, and the obtained residue diluted with EtOAc (15 mL), extracted with H₂O (5 mL), dried (MgSO₄) and the solvent evaporated under vacuum.

N-(2-(4-Chlorophenyl)-2-hydroxy-3-(1-H-1,2,4-triazol-1-yl)propyl)-4-nitrobenzamide (9a, R¹ = Cl, R² = H). Prepared from 1-amino-2-(4-chlorophenyl)-3-(1*H*-1,2,4-triazol-1-yl)propan-2-ol (5a, R¹= 4-Cl) (0.2 g, 0.79 mmol.). Product obtained as a white solid, which was purified by gradient column chromatography CH₂Cl₂-MeOH (97: 3 v/v), yield 0.24 g (74 %). M.p. 228-230 °C. TLC (CH₂Cl₂-MeOH 9.5:0.5 v/v), R*f* = 0.44. ¹H NMR (DMSO-*d*₆): δ 8.63 (t, *J* = 5.9 Hz, 1H, N*H*), 8.29 (d, *J* = 8.9 Hz, 2H, Ar), 8.26 (s, 1H, triazole), 7.96 (d, *J* = 8.9 Hz, 2H, Ar), 7.84 (s, 1H, triazole), 7.45 (d, *J* = 8.6 Hz, 2H, Ar), 7.32 (d, *J* = 8.7 Hz, 2H, Ar), 6.00 (s, 1H, OH), 4.63 (dd, *J* = 14.4, 20.8 Hz, 2H, CH₂-triazole), 3.91 (dd, *J* = 6.8, 13.9 Hz, 1H, CHaHbNH), 3.64 (dd, *J* = 5.3, 13.9 Hz, 1H, CHaHbNH). ¹³C NMR (DMSO-*d*₆): δ 166.09 (C, C=O), 151.05 (CH, triazole), 149.50 (C, Ar), 145.47 (CH, triazole), 141.28 (C, Ar), 140.34 (C, Ar), 132.22 (C, C-CI), 129.28 (2 x CH, Ar), 128.37 (2 x CH, Ar), 128.11 (2 x CH, Ar), 123.93 (2 x CH, Ar), 76.12 (C, C-OH), 56.92 (CH₂triazole), 49.15 (CH₂-NH₂). HRMS (ESI), *m*/z. calcd for C₁₈H₁₆ClN₅O₄ ([M + H]⁺), 402.0969; found, 402.0969. HPLC (Method B): 99.9%, R_t = 4.84 min.

N-(2-(2,4-dichlorophenyl)-2-hydroxy-3-(1*H*-1,2,4-triazol-1-yl)propyl)-4-nitrobenzamide (9b, R¹ = CI, R² = CI). Prepared from 1-amino-2-(2,4-dichlorophenyl)-3-(1*H*-1,2,4-triazol-1-yl)propan-2-ol (5b, R¹= 2,4-diCl) (0.5 g, 1.74 mmoL). Product obtained as a white solid which was purified by gradient column chromatography CH₂Cl₂-MeOH (97.5: 2.5 to 97: 3 v/v), yield 0.42 g (55 %). M.p. 228-230 °C. TLC (CH₂Cl₂-MeOH 9.5:0.5 v/v), R*f* = 0.5. ¹H NMR (DMSO-*d*₆): δ 8.79 (t, *J* = 6.1 Hz, 1H, N*H*), 8.34 (s, 1H, triazole), 8.30 (d, *J* = 9.0 Hz, 2H, Ar), 7.99 (d, *J* = 8.7 Hz, 2H, Ar), 7.75 (s, 1H, triazole), 7.58 (s, 1H, Ar), 7.56 (d, *J* = 2.2 Hz, 1H, Ar), 7.29 (dd, *J* = 2.2, 8.6 Hz, 1H, Ar), 6.26 (brs, 1H, OH), 5.10 (d, *J* = 14.5 Hz, 1H, CHaHb-triazole), 4.07 (dd, *J* = 5.8, 14.0 Hz, 1H, CHaHbNH), 4.00 (dd, *J* = 6.4, 14.0 Hz, 1H, CHaHbNH). ¹³C NMR (DMSO-*d*₆): δ 166.49 (C, C=O), 151.06 (CH, triazole), 149.55 (C, Ar), 145.46 (CH, triazole), 140.16 (C, Ar), 137.97 (C, Ar), 133.33 (C, C-CI), 132.11 (C, C-CI), 131.49 (CH, Ar), 130.46 (CH, Ar), 129.36 (2 x CH, Ar), 127.27 (CH, Ar), 123.93 (2 x CH, Ar), 76.74 (C, C-OH), 54.03 (CH₂-triazole), 45.81 (CH₂-NH₂). HRMS (ESI), *m*/z. calcd for C₁₈H₁₅Cl₂N₅O₄ ([M + H]*), 436.0579; found, 436.0578. HPLC (Method B): 99.99%, R₁ = 4.68 min.

General procedure for reduction of nitro derivatives to free amine derivatives (10).

To a solution of *N*-(2-(arylphenyl)-2-hydroxy-3-(1*H*-1,2,4-triazol-1-yl)propyl)-4-nitrobenzamide derivative (**9**) (1.0 meq) in dry MeOH (15 mL) was added 10% Pd/C. Then, the reaction atmosphere was degassed, filled with hydrogen (using hydrogen balloon) and the mixture stirred at rt for 3 h. The suspension was filtered through a pad of celite and the solvent removed under reduce pressure. The crude product was purified by gradient column chromatography CH_2CI_2 -MeOH (97: 3 v/v).

4-Amino-N-(2-(4-chlorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl)benzamide (10a, R¹ = Cl, R² = H). Prepared from *N*-(2-(4-chlorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl)-4-nitrobenzamide (9a, R¹ = 4-Cl) (0.2 g, 0.5 mmoL). Product obtained as an off-white wax, yield: 0.13 g (71 %). TLC (CH₂Cl₂-MeOH 9.5:0.5 v/v), R*f* = 0.35. ¹H NMR (DMSO-*d*₆): δ 8.25 (s, 1H, triazole), 8.00 (t, *J* = 5.9 Hz, 1H, N*H*), 7.82 (s, 1H, triazole), 7.48 (d, *J* = 8.7 Hz, 2H, Ar), 7.42 (d, *J* = 8.8 Hz, 2H, Ar), 7.31 (d, *J* = 8.8 Hz, 2H, Ar), 6.51 (d, *J* = 8.8 Hz, 2H, Ar), 6.40 (s, 1H, OH), 4.53 (dd, *J* = 14.3, 20.3 Hz, 2H, CH₂-triazole), 3.79 (dd, *J* = 6.6, 14.1 Hz, 1H, CHaHbNH), 3.60 (dd, *J* = 5.1, 14.1 Hz, 1H, CHaHbNH). ¹³C NMR (DMSO-*d*₆): δ 168.38 (C, C=O), 152.50 (C, Ar), 150.97 (CH, triazole), 145.45 (CH, triazole), 141.73 (C, Ar), 132.07 (C, C-Cl), 129.41 (2 x CH, Ar), 128.42 (2 x CH, Ar), 128.09 (2 x CH, Ar), 120.45 (C, Ar), 112.92 (2 x CH, Ar), 76.54 (C, C-OH), 57.33 (CH₂-triazole), 48.39 (CH₂-NH). HRMS (ESI), *m*/z. calcd for C₁₈H₁₈ClN₅O₂ ([M + Na]⁺), 394.1047; found, 394.1047. HPLC (Method B): 99.81%, R₁ = 4.695 min.

4-Amino-N-(2-(2,4-dichlorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl)benzamide (10b, R¹ = CI, R² = CI). Prepared from *N*-(2-(2,4-dichlorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl)-4-nitrobenzamide (9b, R¹ = 2,4-diCl) (0.38 g, 0.86 mmoL). Product obtained as a pale-yellow wax, yield 0.35 g (100 %). TLC (CH₂Cl₂-MeOH 9.5:0.5 v/v), R*f* = 0.36. ¹H NMR (DMSO-*d*₆): δ 8.34 (s, 1H, triazole), 8.21 (t, *J* = 5.9 Hz, 1H, N*H*), 7.73 (s, 1H, triazole), 7.58 (d, *J* = 8.7 Hz, 1H, Ar), 7.55 (d, *J* = 2.2 Hz, 1H, Ar), 7.51 (d, *J* = 8.7 Hz, 2H, Ar), 7.28 (dd, *J* = 2.3, 8.7 Hz, 1H, Ar), 6.87 (s, 1H, OH), 6.51 (d, *J* = 8.7 Hz, 2H, Ar), 5.71 (brs, 2H, N*H*₂), 5.00 (d, *J* = 14.3 Hz, 1H, CHaHb-triazole), 4.65 (d, *J* = 14.3 Hz, 1H, CHaHb-triazole), 3.94 (d, *J* = 5.3 Hz, 2H, CH₂-NH). ¹³C NMR (DMSO-*d*₆): δ 169.23 (C, C=O), 152.67 (C, Ar), 150.96 (CH, triazole), 145.61 (CH, triazole), 138.48 (C, Ar), 133.22 (C, C-Cl), 131.96 (C, C-Cl), 131.67 (CH, Ar), 130.37 (CH, Ar), 129.59 (2 x CH, Ar), 127.29 (CH, Ar), 120.01 (C, Ar), 112.90 (2 x CH, Ar), 77.21 (C, C-OH), 54.33 (CH₂-triazole), 46.39 (CH₂-NH). HRMS (ESI), *m*/z. calcd for C₁₈H₁₇Cl₂N₅O₂ ([M + Na]⁺), 428.0657; found, 428.0660. HPLC (Method B): 99.98%, R₁ = 4.68 min.

S37

References

[1] Sekimata, K.; Han, S-Y.; Yoneyama, K.; Takeuchi, Y.; Yoshida, S.; Asami, T. J. A specific and potent inhibitor of brassinosteroid biosynthesis possessing a dioxolane ring. *Agric. Food Chem.* **2002**, *50*, 3486-3490. doi: <u>10.1021/jf011716w</u>

[2] Astleford, B.A.; Goe, G.L.; Keay, J.G.; Scriven, E.F.V. Synthesis of 1-alkyl-1,2,4-triazoles: a new one-pot regiospecific procedure. J. Org. Chem. **1989**, 54, 731-73. https://doi.org/10.1021/jo00264a048