Supporting Information:

Figure S1: Extinction coefficients determined by qNMR. (a) DB1 (b) DB2. Experiments were conducted in triplicate.

Figure S2: Normalized absorbance spectra of DB1 and DB2 in DMSO.

Figure S3: Incubation of DB2 in 2% DMSO and PBS with NADH (No NTR). (a) Fluorescence spectra of DB2 before and after 10-minute incubation with NADH. (b) Absorbance spectra of DB2 before and after 10-minute incubation with NADH.

Figure S4: Activation of **DB2** in *E. coli* monitored by fluorescence. While we observe an increase in fluorescence after 24 hrs, a similar increase in B. subtilis was observed at only 4 hrs with an almost 10-fold greater signal observed at 24 hrs. Experiments were conducted in triplicate.

Figure S5: Cell viability assay using CFU counting. Images of colonies grown on agar pad are taken by Invitrogen iBright FL1500 imaging system and preprocessed with µManger or Fiji/ImageJ. Triplicates were used for statistical analysis.

Scheme S1: Synthesis of **EY2.** The carboxylic acid on EY is converted to a methyl ester in the first step to direct nucleophilic substitution of the 4-nitrobenzyl group towards the hydroxyl group in the subsequent step.

Figure S6: Cell viability of **DB2** in HeLa cells under dark or light conditions (10 minutes, 530 nm, 41.8 mW/cm²). Experiments were conducted in triplicate.

Figure S7: Photophysical characterizations of **EY2** in 2% DMSO and PBS. (a) Normalized absorbance spectra of compounds. (b) Fluorescence spectra of compounds. (c) ¹O₂ generation of compounds detected by ABDA under 490 nm irradiation (28.0 mW/cm²). EY was chosen as the standard and ABDA under irradiation serves as a control. Experiments were conducted in triplicate.

Figure S8: Extinction coefficients determined by qNMR. (a) **EY1** (b) **EY2**. Experiments were conducted in triplicate.

Figure S9: Normalized absorbance spectra of EY1 and EY2 in DMSO.

Table S1: Summary of Photophysical Data for EY1 and EY2

	EY1	EY2
λ_{max} (abs, PBS)	521	481
λ_{max} (em, PBS)	544	543
λ_{max} (abs, DMSO)	535	466
ε (M ⁻¹ cm ⁻¹ , DMSO)*	132,000	43,000
$\Phi_{\rm f}({ m DMSO})$	0.61 ± 0.05	0.015 ± 0.002
Φ_{Δ} (PBS)	0.67 ± 0.11	0.13 ± 0.01

* Extinction coefficients were determined at the λ_{abs} in DMSO

Figure S10: Nitroreductase reaction with EY2 in 2% DMSO and PBS. (a) Fluorescence time-course of DB2 with NTR and NADH. (b) Fluorescence spectra of EY2 before and after 10-minute incubation with NTR and NADH. (c) Absorbance spectra of EY2 before and after 10-minute incubation with NTR and NADH.

Figure S11: ¹H NMR of DB1

Figure S12: ¹³C NMR of DB1

Figure S13: ¹H NMR of DB2

Figure S14: ¹³C NMR of DB2

Figure S15: ¹H NMR of EY1

Figure S16: ¹³C NMR of EY1

Figure S17: ¹H NMR of EY2

Figure S18: ¹³C NMR of EY2

Figure S19: MS of DB1

Figure S21: MS of EY1

Figure S22: MS of EY2