Supporting Information

2D and 3D Anticancer Activity of Diiron Bis-Cyclopentadienyl

Complexes Incorporating Flurbiprofen and Chlorambucil

Lorenzo Biancalana,^a Michele De Franco,^b Valentina Gandin,^{b,*} Fabio Marchetti^{a,*}

^a University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa,

Italy

^b University of Padova, Department of Pharmaceutical and Pharmacological Sciences, Via F. Marzolo 5, I-

35131 Padova, Italy

Table of contents	Page(s)
Synthesis of Flurbiprofen and Chlorambucil 2-hydroxyethyl esters (Charts S1-S3; Figure	S2-S4
S1)	
IR, NMR and MS spectra of diiron compounds (Figures S2-S28)	S5-S19
HPLC analyses of bionconjugated diiron complexes (Figures S29-S30)	S20
NMR spectra of bionconjugated phosphane oxides (Figures S31-S42)	S21-S27
Inertness/speciation in aqueous media: NMR data and other details	S28-S30
References	S31

Synthesis of Flurbiprofen and Chlorambucil 2-hydroxyethyl esters

General procedure for 2-hydroxyethyl esters. A solution of the carboxylic acid (130-160 mg), EDCI-HCl (1.25 equivalents) and DMAP (7 mg, 0.06 mmol) in anhydrous THF (2 mL) under N₂ was treated with ethylene glycol (0.9 mL, 16 mmol) and stirred at room temperature overnight. Next, volatiles were removed under vacuum. The residue was suspended in water (10 mL) and extracted with CH_2Cl_2 (2 x 15 mL). The combined organic fractions were extracted with water (3 x 10 mL) then taken to dryness under vacuum. The residue was dissolved in CH_2Cl_2 and moved on top of a silica gel column (h 6, d 2.3 cm). Impurities were eluted with CH_2Cl_2 then the title compound was eluted with Et_2O . Volatiles were removed under vacuum from the eluate solution (40 °C).

Flurbiprofen, 2-hydroxyethyl ester, FLU-CO₂(CH₂)₂OH (Chart S1).

The title compound was previously prepared by a similar method.¹ Synthesized according to the general procedure using flurbiprofen (**FLU**-CO₂H; 164 mg, 0.671 mmol). The colorless oil was re-dissolved in Et₂O, cooled at – 20 °C and then dried under vacuum without heating. The resulting colorless solid was stored at 4 °C under N₂. Yield: 151 mg, 78%. ¹H NMR (CDCl₃): δ /ppm = 7.56–7.51 (m, 2H), 7.47–7.34 (m, 4H), 7.19–7.10 (m, 2H) (Ph + C₆H₃F); 4.31–4.19 (m, 2H, OCH₂); 3.86–3.77 (m, 3H, OCH₂ + CH–C=O); 1.56 (d, ³J_{HH} = 7.2 Hz, 3H, CH₃).

Chlorambucil, 2-hydroxyethyl ester, CMB-CO₂(CH₂)₂OH (Chart S2).

Chart S2. Structure of CMB-CO₂(CH₂)₂OH.

The title compound was previously prepared by a similar method.² Synthesized according to the general procedure, using chlorambucil (**CMB**-CO₂H; 137 mg, 0.449 mmol). Colorless oil, stored at 4 °C under N₂. Yield: 150 mg, 96%. ¹H NMR (CDCl₃): δ /ppm = 7.07 (d, ³*J*_{HH} = 8.5 Hz, 2H, C₆H₄); 6.63 (d, ³*J*_{HH} = 8.6 Hz, 2H, C₆H₄); 4.24–4.16 (m, 2H, C(=O)O–CH₂); 3.87–3.77 (m, 2H, CH₂OH); 3.75–3.67 (m, 4H, CH₂N); 3.65–3.59 (m, 4H, CH₂Cl); 2.56 (t, ³*J*_{HH} = 7.5 Hz, 2H, CH₂–C=O); 2.36 (t, ³*J*_{HH} = 7.5 Hz); 1.99–1.85 (m) (4H, CH₂CH₂); 1.75 (br, 1H, OH). Resonances for the CH₂N and CH₂Cl groups were unambiguously assigned by the ¹H-¹³C HMBC experiment.

Flurbiprofen, 2-hydroxyethyl 4-(diphenylphosphanyl)benzoate, PFLU (Chart S3).

Chart S3. Structure of Flurbiprofen, 2-hydroxyethyl 4-(diphenylphosphanyl)benzoate, PFLU.

In a 15 mL Schlenk tube under N₂, 4-(diphenylphosphanyl)benzoic acid (38 mg, 0.12 mmol), **FLU**-CO₂(CH₂)₂OH (35 mg, 0.12 mmol), DMAP (4 mg, 0.03 mmol), EDCI·HCl (30 mg, 0.16 mmol) and anhydrous CH₂Cl₂ (4 mL) were introduced in this order. The colorless solution was stirred overnight at room temperature then diluted with CH₂Cl₂ and extracted with water (3 x 10 mL). Volatiles were removed under vacuum from the organic solution, affording a pale-yellow solid. Yield: 70 mg, > 90%. The purity was considered satisfactory for the subsequent reaction with [**1-MeCN**]CF₃SO₃ therefore silica gel chromatography was avoided. ¹H NMR (CDCl₃): δ /ppm = 7.89 (d, ³J_{HH} = 7.6 Hz, 2H, C₆H₄P); 7.48–7.27

(m, 18H, Ph + C₆H₃F); 7.11 (app. t, ${}^{3}J_{HH} \approx {}^{3}J_{HP} \approx 8$ Hz, 2H, C₆H₄P); 4.52–4.41 (m, 4H, OCH₂); 3.78 (q, ${}^{3}J_{HH} = 7.3$ Hz, 1H, CH–C=O), 1.53 (d, ${}^{3}J_{HH} = 7.2$ Hz, 3H, CH₃). ${}^{31}P{}^{1}H$ NMR (CDCl₃): $\delta/ppm = -5.0$.

Figure S1. ³¹P{¹H} NMR spectrum (162 MHz, CDCl₃) of P_{FLU}.

IR, NMR and MS spectra of diiron compounds

Figure S2. Solid-state IR spectrum (650-4000 cm⁻¹) of $[Fe_2Cp_2(CO){Ph_2P(4-C_6H_4CO_2H)}(\mu-CO){\mu-CO}]$ CNMe(Cy)}]CF₃SO₃, [2]CF₃SO₃.

Figure S3. Solid-state IR spectra (650-4000 cm⁻¹) of $[Fe_2Cp_2(CO){Ph_2P(4-C_6H_4CO_2)}(\mu-CO){\mu-CNMe(Cy)}]$, **2**^{-H} (dark blue line) and **[2]**CF₃SO₃ (red line).

Figure S4. Solid-state IR spectrum (650-4000 cm⁻¹) of $[Fe_2Cp_2(CO){Ph_2P(4-C_6H_4CO_2(CH_2)_2OC(O)-FLU)}(\mu-CO){\mu-CO}]$ CNMe(Cy)}]CF₃SO₃, [**3**]CF₃SO₃.

Figure S5. Solid-state IR spectrum (650-4000 cm⁻¹) of $[Fe_2Cp_2(CO){Ph_2P(4-C_6H_4CO_2(CH_2)_2OC(O)-CMB)}(\mu-CO){\mu-CNMe(Cy)}]CF_3SO_3$, [4]CF₃SO₃.

Figure S6. Comparison of solid-state IR spectra (1300-2100 cm⁻¹) of [**2**]CF₃SO₃ (top, blue line), **2**^{-H} (yellow line), [**3**]CF₃SO₃ (red line), [**4**]CF₃SO₃ (bottom, cyan line), normalized with respect to the intensity of the μ -CO stretching absorption (\approx 1800 cm⁻¹).

Figure S7. Comparison of IR spectra (1500-2100 cm⁻¹) of CH₂Cl₂ solutions of [**2**]CF₃SO₃ (top, blue line), **2**^{-H} (yellow line), [**3**]CF₃SO₃ (red line), [**4**]CF₃SO₃ (bottom, cyan line), normalized with respect to the intensity of the μ -CO stretching absorption (\approx 1800 cm⁻¹). Compound [**2**]CF₃SO₃ displays two stretching bands for the carboxylic C=O, probably related to dimer formation in solution.

Figure S9. ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, acetone-d₆) of [**2**]CF₃SO₃. Doublets in the 140-120 ppm region are not highlighted.

Figure S11. Black line: ¹H NMR spectrum (401 MHz, acetone-d₆) of [**2**]CF₃SO₃. Red line: ¹H NOESY with irradiation at 5.22 ppm (Cp^P of the *Z* isomer). Blue line: ¹H NOESY with irradiation at 5.14 ppm (Cp^P of the *E* isomer). Observed NOEs are indicated by the arrows.

Figure S12. ¹H NMR spectrum (401 MHz, CD₃OD) of **2**^{-H}. Signals due to the potassium 4-(diphenylphosphanyl oxide)benzoate impurity are marked with (*).

Figure S13. ¹³C{¹H} NMR spectrum (101 MHz, CD₃OD) of **2**^{-H}. Doublets in the 140-120 ppm region are not highlighted.

Figure S14. ³¹P{¹H} NMR spectrum (162 MHz, CD₃OD) of **2**^{-H}. The signal due to the potassium 4-(diphenylphosphanyl oxide)benzoate impurity is marked with (*).

Figure S15. Black line: ¹H NMR spectrum (401 MHz, CD₃OD) of 2^{-H} . Red line: ¹H NOESY with irradiation at 5.06 ppm (Cp^P of the *Z* isomer). Blue line: ¹H NOESY with irradiation at 4.97 ppm (Cp^P of the *E* isomer). Observed NOEs are indicated by the arrows.

Figure S16. ¹H NMR spectrum (401 MHz, acetone-d₆) of [3]CF₃SO₃.

Figure S17. ¹³C{¹H} NMR spectrum (101 MHz, acetone-d₆) of [**3**]CF₃SO₃. Doublets in the 140-120 ppm region are not highlighted.

Figure S18. $^{19}F{^1H}$ NMR spectrum (376 MHz, acetone-d₆) of [3]CF₃SO₃.

Figure S19. ³¹P{¹H} NMR spectrum (162 MHz, acetone-d₆) of [3]CF₃SO₃.

Figure S20. Black line: ¹H NMR spectrum (401 MHz, acetone-d₆) of [**3**]CF₃SO₃. Red line: ¹H NOESY with irradiation at 5.18 ppm (Cp^P of the *Z* isomer). Blue line: ¹H NOESY with irradiation at 5.10 ppm (Cp^P of the *E* isomer). R = $(CH_2)_2OC(O)$ -**FLU**. Observed NOEs are indicated by the arrows.

Figure S21. ¹H-¹³C HSQC NMR spectrum of (acetone-d₆) of [3]CF₃SO₃.

Figure S22. ¹H NMR spectrum (401 MHz, acetone-d₆) of [4]CF₃SO₃.

Figure S23. ¹³C{¹H} NMR spectrum (101 MHz, acetone-d₆) of [4]CF₃SO₃. Doublets in the 140-120 ppm region are not highlighted.

Figure S25. Black line: ¹H NMR spectrum (401 MHz, acetone-d₆) of [**4**]CF₃SO₃. Red line: ¹H NOESY with irradiation at 5.20 ppm (Cp^P of the *Z* isomer). Blue line: ¹H NOESY with irradiation at 5.12 ppm (Cp^P of the *E* isomer). R = $(CH_2)_2OC(O)$ -CMB. Observed NOEs are indicated by the arrows.

Figure S26. ¹H-¹³C HSQC NMR spectrum of (acetone-d₆) of [4]CF₃SO₃.

Figure S27. FIA-ESI(+)-MS spectrum of [**3**]CF₃SO₃ in MeOH (black line) and calculated isotopic pattern (red boxes). Calcd. base peak for [**3**]⁺ (C₅₆H₅₄FFe₂NO₆P): 998.2465 Da.

Figure S28. FIA-ESI(+)-MS spectrum of [4]CF₃SO₃ in MeOH (black line) and calculated isotopic pattern (red boxes). Calcd. base peak for [4]⁺ ($C_{55}H_{60}Cl_2Fe_2N_2O_6P$): 1057.2358 Da.

HPLC analyses of bionconjugated diiron complexes

Figure S29. Chromatogram of [**3**]CF₃SO₃ recorded on a C₁₈ capillary column using ⁱPrOH/H₂O 4:1 *V*/*V* as eluent (isocratic elution) and an UV-Vis detector at 280 nm. $t_r = 2.90$ min. Chromatographic purity 92 % (integration: 2.0-4.5 min).

Figure S30. Chromatogram of [4]CF₃SO₃ recorded on a C₁₈ capillary column using ⁱPrOH/H₂O 4:1 *V*/*V* as eluent (isocratic elution) and an UV-Vis detector at 280 nm. $t_r = 2.90$ and 3.29 min, ascribable to *E*/*Z* diastereomers. Chromatographic purity 93 % (integration: 2.0-4.5 min).

NMR spectra of bionconjugated phosphane oxides

Figure S31. ¹H NMR spectrum (401 MHz, CDCl₃) of 2-hydroxyethyl 4-(diphenylphosphoryl)benzoate, **O=P^{OH}**.

Figure S32. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of **O=P^{OH}**.

Figure S34. ¹H NMR spectrum (401 MHz, CDCl₃) of Flurbiprofen, 2-hydroxyethyl 4-(diphenylphosphoryl)benzoate, **O=P^{FLU}**.

Figure S35. ¹³C{¹H} NMR spectrum (101 MHz, CDCI₃) of O=P^{FLU}.

Figure S38. ¹H-¹³C HMBC NMR spectrum of (CDCl₃) of O=P^{FLU}.

Figure S39. ¹H NMR spectrum (401 MHz, CDCl₃) of Chlorambucil, 2-hydroxyethyl 4-(diphenylphosphoryl)benzoate, **O=P^{CMB}**.

Figure S40. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of $O=P^{CMB}$.

Figure S42. ¹H-¹³C HMBC NMR spectrum of (CDCl₃) of **O=P^{CMB}**.

Inertness/speciation in aqueous media: NMR data and other details

Chemical shifts in ¹H NMR spectra are referenced to Me₂SO₂ [δ /ppm = 3.14]

[2]CF₃SO₃. Olive green-brown solution. ¹H NMR (D₂O/CD₃OD 1:1 *V/V*): δ /ppm = 7.99–7.88 (m, 2H); 7.76–7.15 (m, 12H); 5.15, 5.14 (s, 5H); 5.10, 5.00 (s, 5H); 4.09, 4.02 (s, 3H); 2.28–1.29 (m, 10H). ³¹P{¹H} NMR (D₂O/CD₃OD 1:1 *V/V*): δ /ppm = 60.4, 60.0. Isomer (*Z/E*) ratio = 2.0 (0-72 h). Other species detected in the final solution. **O=PPh₂(4-C₆H₄CO₂H)**. ¹H NMR (D₂O/CD₃OD 1:1 *V/V*): δ /ppm = 8.09–8.04 (m). ³¹P{¹H} NMR (D₂O/CD₃OD 1:1 *V/V*): δ /ppm = 32.9.

2^{-H}. Olive green-brown solution. ¹H NMR (D₂O/CD₃OD 1:1 *V/V*): δ /ppm = 7.87 (d, *J* = 7.0 Hz, 2H); 7.57–7.12 (m, 12H); 5.15, 5.14 (s, 5H); 5.10, 5.00 (s,*); 4.09, 4.01 (s, 3H); 2.14–1.28 (m, 10H). ³¹P{¹H} NMR (D₂O/CD₃OD 1:1 *V/V*): δ /ppm = 60.2, 59.8. ¹H NMR (D₂O/CD₃OD 2:5 *V/V*): δ /ppm = 7.97–7.91 (m, 2H); 7.59–7.34 (m, 9H); 7.26 (s-br, 3H); 5.18, 5.17 (s, 5H); 5.12, 5.03 (s,*); 4.13, 4.06 (s, 3H). ³¹P{¹H} NMR (D₂O/CD₃OD 2:5 *V/V*): δ /ppm = 59.8, 59.4. Isomer (*Z/E*) ratio = 2.0 (0-72 h, for both solutions). *Over HDO resonance.

Other species detected in the final solutions. $O=PPh_2(4-C_6H_4CO_2)^{-1}$. ¹H NMR (D₂O/CD₃OD 1:1 V/V): $\delta/ppm = 8.07-8.02$ (m). ³¹P{¹H} NMR (D₂O/CD₃OD 1:1 V/V): $\delta/ppm = 35.7$. The same set of signals (for 2^{-H} and $O=PPh_2(4-C_6H_4CO_2)^{-1}$) were observed in the DMEM-d/CD₃OD 1:1 v/v solution of [2]CF₃SO₃.

[3]CF₃SO₃. Olive green-brown solution. ¹H NMR (D₂O/CD₃OD 2:5 *V*/*V*): δ /ppm = 7.76 (app. t, *J* = 7.6 Hz, 2H), 7.60–7.07 (m, 20H); 5.15, 5.13, 5.01, 4.94 (s,*); 4.61–4.38 (m, 4H); 4.06, 3.97 (s, 3H); 3.93 (q, *J* = 7.3 Hz, 1H); 2.37–1.37 (m, 10H); 1.53 (app. dd, *J* = 6.7 Hz, 3H). *Over HDO resonance. ³¹P {¹H} NMR (D₂O/CD₃OD 2:5 *V*/*V*): δ /ppm = 60.2, 59.8. Isomer (*Z*/*E*) ratio = 2.0 (0-72 h).

Other species detected in the final solution: **O=P**^{FLU}.

[4]CF₃SO₃. Olive green-brown solution. ¹H NMR (D₂O/CD₃OD 2:5 *V/V*): δ /ppm = 7.99 (app. t, *J* = 8.7 Hz, 2H); 7.64–7.15 (m, 12H); 7.01–6.94 (m, 2H); 6.60 (app. t, *J* = 9.0 Hz, 2H); 5.16, 5.14, 4.99 (s,*); 4.66–4.59 (m, 2H); 4.56–4.49 (m, 2H); 4.09, 4.01 (s, 3H); 3.75–3.64 (m, 8H); 2.46 (t, *J* = 7.3 Hz, 2H); 2.38 (t, *J* = 6.7 Hz, 2H); 2.31–2.06, 1.97–1.80, 1.76–1.20 (m, 12H). *Over HDO resonance. ³¹P{¹H} NMR (D₂O/CD₃OD 2:5 *V/V*): δ /ppm = 60.2, 59.8. Isomer (*Z/E*) ratio = 2.0 (0-72 h).

Other species detected in the final solution: **O=P^{CMB}** and/or related species; diiron compounds derived from [4]⁺ by rearrangements/hydrolysis of the chlorambucil backbone. ¹H NMR (D₂O/CD₃OD 2:5 *V/V*): $\delta/\text{ppm} = 5.17$ (s), 5.15 (s), 5.10 (s), 4.10 (s), 4.03 (s), 3.57–3.47 (m).

Reference compounds.

PPh₂(4-C₆H₄CO₂H). ¹H NMR (D₂O/CD₃OD 2:5 *V/V*): δ /ppm = 8.00 (d, *J* = 7.2 Hz, 2H), 7.51–7.41 (m, 6H), 7.35 (app. q, *J* = 7.2 Hz, 6H). ³¹P{¹H} NMR (D₂O/CD₃OD 2:5 *V/V*): δ /ppm = -5.2.

O=PPh₂(4-C₆H₄CO₂H). ¹H NMR (D₂O/CD₃OD 2:5 *V/V*): δ/ppm = 8.20 (dd, J = 8.3, 2.5 Hz, 2H), 7.80–7.61 (m, 12H). ³¹P{¹H} NMR (D₂O/CD₃OD 2:5 *V/V*): δ/ppm = 33.5.

O=P^{FLU}. ¹H NMR (D₂O/CD₃OD 2:5 *V/V*): δ/ppm = 7.93 (dd, *J* = 8.2, 2.2 Hz, 2H), 7.74 (t, *J* = 7.2 Hz, 2H), 7.68–7.52 (m, 9H), 7.43–7.30 (m, 4H), 7.28–7.17 (m, 2H), 7.13 (d, *J* = 12.0 Hz, 1H), 4.69 (m*), 4.60–4.55 (m, 2H), 4.45 (dt, *J* = 7.8, 3.6 Hz, 1H), 3.93 (q, *J* = 7.0 Hz, 1H), 1.54 (d, *J* = 7.1 Hz, 3H); *shoulder of the HDO signal. ³¹P{¹H} NMR (D₂O/CD₃OD 2:5 *V/V*): δ/ppm = 32.9.

O=P^{CMB. 1}H NMR (D₂O/CD₃OD 2:5 *V/V*): δ /ppm = 8.20 (dd, *J* = 8.2, 2.2 Hz, 2H), 7.85–7.73 (m, 4H), 7.70–7.58 (m, 8H), 6.98 (d, *J* = 8.5 Hz, 2H), 6.61 (d, *J* = 8.5 Hz, 2H), 4.68–4.63 (m*), 4.55–4.50 (m, 2H), 3.74–3.67 (m, 4H), 3.67–3.62 (m, 4H), 2.49 (t, *J* = 7.4 Hz, 2H), 2.38 (t, *J* = 7.0 Hz, 2H), 1.87 (q, *J* = 7.4 Hz, 2H); *shoulder of the HDO signal. ³¹P{¹H} NMR (D₂O/CD₃OD 2:5 *V/V*): δ /ppm = 32.9.

FLU-CO₂⁻ (from **FLU**-CO₂H in the buffered DMEM-d solution). ¹H NMR (D₂O/CD₃OD 2:5 *V/V*): δ/ppm = 7.59–7.54 (m, 2H), 7.53–7.42 (m, 4H), 7.28 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.22 (dd, *J* = 12.0, 1.3 Hz, 1H), 3.84 (q, *J* = 7.1 Hz, 1H), 1.54 (d, *J* = 7.1 Hz, 3H).

FLU-CO₂(CH₂)₂OH. ¹H NMR (D₂O/CD₃OD 2:5 *V/V*): δ/ppm = 7.59–7.55 (m, 2H), 7.54–7.48 (m, 3H), 7.47–7.42 (m, 1H), 7.29 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.23 (dd, *J* = 11.9, 1.7 Hz, 1H), 4.34–4.26 (m, 1H), 4.21–4.15 (m, 1H), 3.97 (q, *J* = 7.1 Hz, 1H), 3.85–3.76 (m, 2H), 1.58 (d, *J* = 7.2 Hz, 3H).

CMB-CO₂⁻ (from **CMB**-CO₂H in the buffered DMEM-d solution). ¹H NMR (D₂O/CD₃OD 2:5 *V*/*V*): δ /ppm = 7.13 (d, *J* = 8.6 Hz, 2H), 6.75 (d, *J* = 8.6 Hz, 2H), 3.79–3.76 (m, 4H), 3.74–3.69 (m, 4H), 2.59 (t, *J* = 7.5 Hz, 2H), 2.34 (t, *J* = 7.4 Hz, 2H), 1.98–1.81 (m, 2H).

CMB-CO₂(CH₂)₂OH. ¹H NMR (D₂O/CD₃OD 2:5 *V/V*): δ/ppm = 7.13 (d, *J* = 8.6 Hz, 2H), 6.75 (d, *J* = 8.6 Hz, 2H), 4.21–4.16 (m, 2H), 3.83–3.75 (m, 6H), 3.74–3.70 (m, 4H), 2.60 (t, *J* = 7.4 Hz, 2H), 2.43 (t, *J* = 7.0 Hz, 2H), 1.93 (quint, *J* = 7.4 Hz, 2H).

References

- L. Biancalana, L. K. Batchelor, S. A. P. Pereira, P.-J. Tseng, S. Zacchini, G. Pampaloni, L. M. F. S. Saraiva,
 P. J. Dyson, F. Marchetti, Bis-conjugation of Bioactive Molecules to Cisplatin-like Complexes through (2,2'-Bipyridine)-4,4'-Dicarboxylic Acid with Optimal Cytotoxicity Profile Provided by the Combination Ethacrynic Acid/Flurbiprofen, *Chem. Eur. J.* 2020, **26**, 17525-17535.
- (a) J. Liu, W. Liu, I. Weitzhandler, J. Bhattacharyya, X. Li, J. Wang, Y. Qi, S. Bhattacharjee, A. Chilkoti, Ring-Opening Polymerization of Prodrugs: A Versatile Approach to Prepare Well-Defined Drug-Loaded Nanoparticles, *Angew. Chem. Int. Ed.* 2015, 54, 1002-1006. (b) M. D. Urbaniak, J. P. Bingham, J. A. Hartley, D. N. Woolfson, S. Caddick, Design and Synthesis of a Nitrogen Mustard Derivative Stabilized by Aponeocarzinostatin, *J. Med. Chem.* 2004, 47, 4710-4715.