Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Hard Carbon Derived from Physalis alkekengi L. husk as a Stable Anode for Sodium-Ion

Batteries

Liying Liu¹, Henry R. Tinker², Yusheng Wu¹, Jiaqi Lv³, Laishi Li¹, Yingjiao Fang¹, Yuhan Wu^{3,*}, Yang Xu^{2,*}

¹School of Materials Science and Engineering, Shenyang University of Technology, Shenyang

110870, China

²Department of Chemistry, University College London, London WC1H 0AJ, UK

³School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang

110870, China

*Corresponding author:

yuhanwu@sut.edu.cn (Yuhan Wu)

y.xu.1@ucl.ac.uk (Yang Xu)

Figure S1 The SEM image of the PLH.

Sample	<i>d</i> -spacing (Å)	R	I _D /I _G (%)	Surface area $(m^2 g^{-1})$	Pore volume $(cm^3 g^{-1})$
S-1000	3.62	2.41	2.38	18.81	0.024
S-1200	3.63	2.58	2.20	20.17	0.038
S-1400	3.58	2.64	1.70	9.92	0.031

Table S1. Structural properties of S-Xs.

Figure S2 CV curves of (a) S-1000 and (b) S-1400.

Figure S3 Galvanostatic charge/discharge profiles of (a) S-1000 and (b) S-1400.

Figure. S4 Electrochemical performance of high mass loading S-1200 ($\sim 8 \text{ mg cm}^{-2}$): the chargedischarge profiles at a current density of (a) 0.8 mA cm⁻² and (b) 1.6 mA cm⁻².

Figure S5 Sketch view of the capacitive contribution ratio at the scan rate of 0.1 mV s^{-1} .

Figure S6 Equivalent circuit used for fitting the impedance data. Rs and Rct refer to electrolyte resistance and charge transfer resistance, respectively. CPE represents double-layer capacitance. Warburg impedance (Z_w) corresponds to ion diffusion in the host material.

 Table S2 Fitting results of resistances in the equivalent circuit.

Figure S7 Schematic of the calculation of Na^+ diffusion coefficient using the GITT technique. According to Fick's second law, the value of diffusion coefficient D_2 was calculated by the following equation.

$$D_2 = \frac{4}{\pi\tau} \left(\frac{m_b \cdot V_m}{M_B \cdot S}\right)^2 \left(\frac{\Delta E_s}{\Delta E_\tau}\right)^2$$

Where τ is the current pulse time (s), m_b is the active material mass (g), V_m and M_B are the molar volume (cm³ mol⁻¹) and molar mass (g mol⁻¹) of carbon respectively, S is the electrode contact surface area (cm²), E_s is the GITT single-step steady-state voltage change, and E_{τ} is the single-step current pulse voltage change.

Figure S8 Cycling performance of $Na_3V_2(PO_4)_3$.

Materials	Cycling performance	Rate capability	Reference
Na ₃ V ₂ (PO ₄) ₃ /	60 mAh g ⁻¹ @0.059 A		Nano Energy,
hard carbon	$g^{-1}/1000$ cycles		2016, 28 , 216.
$Na_3V_2(PO_4)_2$	88 mAh g ⁻¹ @0.002 A	114.1, 107.8, 105.6,	Chem. Eng. J.,
F ₃ @C/hard	$g^{-1}/300$ cycles	102, 97.9, 90.6 mAh	2020, 413 ,
carbon	71 mAh g ⁻¹ @0.02 A	g^{-1} @0.001, 0.002,	127565.
	$g^{-1}/600$ cycles	0.004, 0.01, 0.02,	
		0.04 A g^{-1}	
Na ₃ V ₂ (PO ₄) ₃ /	111 mAh g ⁻¹ @0.1 A	123, 92, 68, 54, 47	Small, 2023, DOI:
P-HC-2	$g^{-1}/100$ cycles	mAh g^{-1} @0.1, 0.2,	10.1002/smll.2023
		$0.5 1, 1.5 \text{A g}^{-1}$	09809
$Na_3V_2O_2(PO_4)$	112.8 mAh g ⁻¹ @0.06	121, 109, 99 mAh	ACS Appl. Mater.
) ₂ F/ Hard	A $g^{-1}/70$ cycles	g^{-1} @0.06, 0.24, 0.36	Interfaces, 2018,
Carbon		A g ⁻¹	10 , 16581.
Na _{2-δ} MnHCF	140 mAh g ⁻¹ @0.1 A	96 mAh g^{-1} @0.28 A	J. Am. Chem. Soc,
/hard carbon	$g^{-1}/30$ cycles	g^{-1}	2015, 137 , 2658.
NaCrO ₂	103 mAh g ⁻¹ @0.2 A	88.2, 82.6 mAh	ACS Appl. Mater.
nanowires/ha	$g^{-1}/55$ cycles	g^{-1} @2, 3 A g^{-1}	Interfaces, 2019,
rd carbon			11, 4037.
Na ₃ V ₂ (PO ₄) ₃ /	161.99 mAh g ⁻¹ @0.1	221.41, 179.90,	This work
S-1200	A $g^{-1}/100$ cycles	141.74 mAh	
		g ⁻¹ @0.1, 0.2, 0.3 A	
		g^{-1}	

 Table S3 Electrochemical performance comparison of SIB full cells reported in literatures.

Figure S9 The full cell illuminates different LEDs with different working potentials for red (1.8–2.4 V), blue (2.8–3.4 V), green (1.8–2.4 V), and yellow (1.8–2.4 V).

video S1.mp4

Video S1 The full cell lightens a white LED. Herein, only two-minute video is shown; it actually could work more than fifteen minutes without obvious changes).

Figure S10 Rate performance of the SIB full cell.