Supplementary Information

The Pivotal role of Carbonyl Group in Methoxy Chalcones: Comprehensive Analyses of Structure and Computational Insights into Binding Affinity with Monoamine Oxidase Enzymes

Keshav Kumar Harish^a, Hussien Ahmed Khamees^{a,b}, Keerthikumara Venkatesha^a

Omantheswara Nagaraja^a and Mahendra Madegowda^{a*}

^a Department of Studies in Physics, Manasagangotri, University of Mysore, Mysuru-570006, Karnataka, India

^b Department of Medical Sciences, Community College-Abs City, Hajah Governorate-00967, Yemen

*Correspondence Author:

Dr. Mahendra Madegowda

Email: mahendra@physics.uni-mysore.ac.in

DOS in Physics, Manasagangotri, University of Mysore, Mysuru- 570006, Karnataka, India.

Figure S1: Optimized electronic structures of HK1 and HK2

Figure S2: The FTIR spectra for HK1 and HK2

Figure S3: The experimental band gap obtained from Tauc plot via UV-Vis spectroscopy for HK1 and HK2

Table S1: Comparison of geometrical bond lengths of HK1 and HK2

Compound HK1

Atoms	Bond Len	gth (Å)	Atoms	Bond Ler	ngth(Å)	Atoms	Bond Len	gth (Å)
	XRD	DFT		XRD	DFT		XRD	DFT
C1A-Cl1A	1.736(5)	1.795	C14A-C15A	1.386(7)	1.398	C7A-C6A	1.466(6)	1.470
C5A-Cl2A	1.723(5)	1.758	C4A-C5A	1.381(7)	1.388	C5A-C6A	1.407(6)	1.413
C15A-O3A	1.366(5)	1.364	C12A-C11A	1.384(7)	1.400	C1A-C6A	1.386(6)	1.411
C16A-O3A	1.422(5)	1.422	C2A-C1A	1.369(6)	1.391	H7A-C7A	0.9290	1.081
C9A-O1A	1.207(4)	1.215	H14A-C14A	0.9300	1.081	C8A-C7A	1.311(6)	1.340
C11A-O2A	1.361(5)	1.357	C13A-C14A	1.367(9)	1.391	H8A-C8A	0.9300	1.081
C17A-O2A	1.429(6)	1.421	H13A-C13A	0.9300	1.084	H17G-C17A	0.9600	1.095
C10A-C9A	1.505(5)	1.509	C12A-C13A	1.375(9)	1.391	H17I-C17A	0.9600	1.095
C8A-C9A	1.478(6)	1.491	H12A-C12A	0.9300	1.081	H4A-C4A	0.9300	1.082
C15A-C10A	1.390(6)	1.402	H2A-C2A	0.9310	1.082	C3A-C4A	1.361(9)	1.391
C11A-C10A	1.392(6)	1.405	C3A-C2A	1.374(7)	1.390	НЗА-СЗА	0.9300	1.083
H16E-C16A	0.9600	1.088	H16F-C16A	0.9600	1.095	H17H-C17A	0.9600	1.095

Atoms	Bond Ler	ıgth (Å)	Atoms	Bond Len	gth(Å)	Atoms	Bond Len	gth (Å)
	XRD	DFT		XRD	DFT		XRD	DFT
C1-Br1A	1.900(4)	1.924	C11A-C10A	1.377(6)	1.405	H8A-C8A	0.9300	1.087
C9A-O1A	1.226(5)	1.216	C7A-C6A	1.454(5)	1.464	H14A-C14A	0.9300	1.081
C15A-O3A	1.348(5)	1.364	C1A-C6A	1.394(6)	1.418	C13A-C14A	1.375(6)	1.391
C16A-O3A	1.436(4)	1.422	C5A-C6A	1.399(6)	1.392	C2A-C1A	1.371(6)	1.395
C11A-O2A	1.367(5)	1.358	H4A-C4A	0.9300	1.084	H5A-C5A	0.9300	1.084
C11A-O2A	1.418(5)	1.358	C5A-C4A	1.371(6)	1.366	H12A-C12A	0.9310	1.081
C10A-C9A	1.496(6)	1.510	C3A-C4A	1.385(7)	1.393	C13A-C12A	1.374(7)	1.391
C8A-C9A	1.447(5)	1.490	C12A-C11A	1.380(6)	1.400	H16A-C16A	0.9600	1.095
C10A-C15A	1.398(5)	1.402	H7A-C7A	0.9300	1.087	H16B-C16A	0.9600	1.089
C14A-C15A	1.379(6)	1.398	C8A-C7A	1.320(6)	1.344	H16C-C16A	0.9600	1.095
H13A-C13A	0.9290	1.082	H2A-C2A	0.9300	1.082	C3A-C2A	1.383(7)	1.393
H17A-C17A	0.9590	1.095	H17B-C17A	0.9600	1.095	H17C-C17A	0.9600	1.095
НЗА-СЗА	0.9300	1.084						

Table S2: Comparison of geometrical bond angles of HK1 and HK2

Atoms	Bond Angles ()		Atoms	Bond Angles ()	
	XRD	DFT		XRD	DFT
C15A-O3A-C16A	118.2(3)	119.11	Cl2A-C5A-C4A	117.2(4)	117.15
C11A-O2A-C17A	118.5(4)	119.13	C6A-C5A-C4A	121.7(4)	123.18
O1A-C9A-C10A	120.9(3)	121.08	O2A-C11A-C10A	115.0(4)	115.83
01A-C9A-C8A	120.8(4)	122.42	O2A-C11A-C12A	124.8(4)	123.76
С10А-С9А-С8А	118.3(3)	116.47	C10A-C11A-C12A	120.2(4)	120.37
C9A-C10A-C15A	119.9(3)	120.37	Cl1A-C1A-C6A	119.6(3)	121.25
C9A-C10A-C11A	120.0(3)	120.58	Cl1A-C1A-C2A	116.8(3)	116.16
C15A-C10A-C11A	120.1(4)	119.01	C6A-C1A-C2A	123.5(4)	122.54
С7А-С6А-С5А	124.6(3)	119.43	С15А-С14А-Н14А	120.4	121.23
C7A-C6A-C1A	120.0(3)	125.31	C15A-C14A-C13A	119.1(5)	118.75
C5A C6A C1A	115.4(4)	115.21	Н14А-С14А-С13А	120.4	120.00
С6А-С7А-Н7А	115.0	115.73	С14А-С13А-Н13А	118.7	119.19
C6A-C7A-C8A	130.1(4)	127.69	C14A-C13A-C12A	122.6(5)	121.63
Н7А-С7А-С8А	115.0	116.49	Н13А-С13А-С12А	118.7	119.17
С9А-С8А-С7А	123.9(4)	120.04	C11A-C12A-C13A	118.4(5)	119.23
С9А-С8А-Н8А	118.1	117.31	С11А-С12А-Н12А	120.8	120.96
С7А-С8А-Н8А	118.1	12257	С13А-С12А-Н12А	120.8	119.80
O3A-C15A-C10A	115.1(4)	115.11	С1А-С2А-Н2А	120.5	119.32
O3A-C15A-C14A	125.3(4)	123.88	C1A-C2A-C3A	119.0(4)	119.81
C10A-C15A-C14A	119.6(4)	120.98	Н2А-С2А-СЗА	120.5	120.58
Cl2A-C5A-C6A	121.1(3)	119.64	С5А-С4А-Н4А	120.0	119.64
С5А-С4А-С3А	120.0(5)	119.23	Н4А-С4А-С3А	120.1	121.12
C2A-C3A-C4A	120.5(5)	120.00	С2А-С3А-НЗА	119.7	119.95
С4А-С3А-НЗА	119.8	120.03	O3A-C16A-H16D	109.5	111.44
O3A C16A H16E	109.4	105.66	O3A-C16A-H16F	109.4	111.19
H16D C16A H16E	109.5	109.43	H16D-C16A-H16F	109.5	109.62
H16E C16A H16F	109.5	109.43	O2A-C17A-H17G	109.5	111.30
O2A C17A H17H	109.5	105.58	O2A-C17A-H17I	109.5	111.49
H17G C17A H17H	109.5	109.35	H17G-C17A-H17I	109.4	109.64
H17H C17A H17I	109.5	109.64			

Atoms	Bond Angles () XRD DFT		Atoms	Bond Angles () XRD DFT	
C15A-O3A-C16A	117.7(3)	119.10	Br1A-C1A-C6A	120.0(3)	122.96
C11A-O2A-C17A	118.0(3)	119.10	Br1A-C1A-C2A	117.7(3)	115.18
01A-C9A-C10A	120.5(3)	120.83	C6A-C1A-C2A	122.2(4)	121.12
01A-C9A-C8A	120.4(4)	120.83	C6A-C5A-C4A	123.5(4)	129.55
C10A-C9A-C8A	119.1(3)	119.53	С6А-С5А-Н5А	118.2	117.12
O3A-C15A-C10A	115.0(3)	115.17	С4А-С5А-Н5А	118.2	117.32
O3A-C15A-C14A	125.1(4)	123.81	С11А-С12А-Н12А	120.8	127.47
C10A-C15A-C14A	119.9(4)	120.09	C11A-C12A-C13	118.5(4)	119.23
C9A-C10A-C15A	119.7(3)	120.42	H12A-C12A-C13A	120.7	119.81
C9A-C10A-C11A	120.6(3)	120.58	O3A-C16A-H16A	109.5	111.22
C15A-C10A-C11A	119.7(4)	118.96	O3A-C16A-H16B	109.5	111.43
C7A-C6A-C1A	123.2(4)	131.11	O3A-C16A-H16C	109.5	105.67
С7А-С6А-С5А	120.7(4)	116.70	H16A-C16A-H16B	109.5	109.38
C1A-C6A-C5A	116.1(4)	112.18	H16A-C16A-H16C	109.5	109.61
Н4А-С4А-С5А	121.3	122.62	H16B-C16A-H16C	109.4	109.40
Н4А-С4А-СЗА	121.3	121.80	C14A-C13A-C12A	122.3(4)	121.59
С5А-С4А-С3А	117.5(4)	115.56	С14А-С13А-Н13А	118.8	119.20
O2A-C11A-C10A	114.7(3)	115.85	С12А-С13А-Н13А	118.9	120.00
02A-C11A-C12A	124.6(4)	123.69	С1А-С2А-Н2А	120.5	119.00
C10A-C11A-C12A	120.7(4)	120.42	C1A-C2A-C3A	119.0(4)	121.12
С6А-С7А-Н7А	116.8	112.89	Н2А-С2А-СЗА	120.5	119.85
С6А-С7А-С8А	126.5(4)	131.73	O2A-C17A-H17A	109.5	111.51
Н7А-С7А-С8А	116.7	112.89	O2A-C17A-H17B	109.4	105.59
С9А-С8А-С7А	124.0(4)	131.73	O2A-C17A-H17C	109.5	111.30
С9А-С8А-Н8А	118.0	117.12	H17A-C17A H17B	109.5	109.35
С7А-С8А-Н8А	118.0	123.33	Н17А-С17А-Н17С	109.5	109.61
С15А-С14А-Н14А	120.6	121.21	Н17В-С17А-Н17С	109.4	109.34
C15A-C14A-C13A	118.8(4)	118.78	С4А-С3А-С2А	121.5(4)	119.73
Н14А-С14А-С13А	120.5	120.00	С4А-СЗА-НЗА	119.3	120.43
С2А-СЗА-НЗА	119.2	121.80			

 Table S3: Comparison of geometrical torsion angles of HK1 and HK2

Atoms	Torsion Ang XRD	gles () DFT	Atoms	Torsion Angles ()XRDDFT	
C16A-O3A-C15A-C10A	172.6(4)	-178.25	C5A-C6A-C1A-C2A	-0.3(6)	0.55
C16A-O3A-C15A-C14A	-8.6(6)	0.420	С6А-С7А-С8А-С9А	177.2(4)	176.79
C15A-O3A-C16A-H16D	-57.7	-61.84	С6А-С7А-С8А-Н8А	-2.8	-0.11
С15А-ОЗА-С16А-Н16Е	-177.8	179.37	Н7А-С7А-С8А-С9А	-2.8	0.12
C15A-O3A-C16A-H16F	62.3	60.79	Н7А-С7А-С8А-Н8А	177.2	-176.78
C17A-O2A-C11A-C10A	178.6(4)	177.47	O3A-C15A-C14A-H14A	2.5	0.596
C17A-O2A-C11A-C12A	-2.0(7)	-4.35	O3A-C15A-C14A-C13A	-177.5(5)	-178.89
C11A-O2A-C17A-H17G	-61.8	-59.26	С10А-С15А-С14А-Н14А	-178.8	179.19
С11А-О2А-С17А-Н17Н	178.2	-177.82	C10A-C15A-C14A-C13A	1.3(7)	-0.263
С11А-О2А-С17А-Н17І	58.2	63.50	СІ2А-С5А-С4А-Н4А	-0.7	-0.64
01A-C9A-C10A-C15A	104.9(4)	117.54	Cl2A-C5A-C4-C3A	179.3(4)	179.19
01A-C9A-C10A-C11A	-73.7(5)	-60.57	С6А-С5А-С4А-Н4А	-178.6	-179.24
C8A-C9A-C10A-C15A	-75.1(5)	-63.94	С6А-С5А-С4А-С3А	1.5(7)	0.59
C8A-C9A-C10A-C11A	106.3(4)	117.92	02- C11A-C12A-C13A	-178.5(5)	-178.27
01A-C9A-C8A-C7A	-175.2(4)	9.28	O2A-C11A-C12A-H12A	1.6	1.5
О1А-С9А-С8А-Н8А	4.8	-173.65	C10A-C11A-C12A-C13A	0.8(7)	-0.16
С10А-С9А-С8А-С7А	4.8(6)	-169.19	C10A-C11A-C12A-H12A	-179.1	179.62
С10А-С9А-С8А-Н8А	-175.2	7.86	Cl1A-C1A-C2A-H2A	-0.9	-1.68
C9A-C10A-C15A-O3A	-1.6(5)	1.06	Cl1A-C1A-C2A-C3A	179.0(4)	177.83
C9A-C10A-C15A-C14A	179.6(4)	-177.64	С6А-С1А-С2А-Н2А	-178.8	-179.45
C11A-C10A-C15A-O3A	177.0(4)	179.22	C6A-1A-C2A-C3A	1.2(7)	0.07
C11A-C10A-C15A-C14A	-1.8(6)	0.50	С15А-С14А-С13А-Н13А	-179.6	179.90
C9A-C10A-C11A-O2A	-1.2(5)	-3.87	C15A-C14A-C13A-C12A	0.3(8)	-0.16
C9A-C10A-C11A-C12A	179.4(4)	177.88	Н14А-С14А-С13А-Н13А	0.4	0.40
C15A-C10A-C11A-O2A	-179.9(4)	177.97	H14A-C14A-C13A-C12A	-179.6	-179.66
C15A-C10A-C11A-C12A	0.7(6)	-0.26	C14A-C13A-C12A-C11A	-1.4(9)	0.40
С5А-С6А-С7А-Н7А	-138.6	36.67	С14А-С13А-С12А-Н12А	178.5	-179.40
C5A-C6A-C7A-C8A	41.4(6)	-140.01	H13A-C13A-C12A-C11A	178.6	-179.66
С1А-С6А-С7А-Н7А	37.9	-141.14	Н13А-С13А-С12А-Н12А	-2	0.52
C1A-C6A-C7A-C8A	-142.1(4)	42.16	C1A-C2A-C3A-C4A	-0.7(7)	-0.41
C7A-C6A-C5A-Cl2A	-2.1(6)	2.49	С1А-С2А-С3А-НЗА	179.2	179.87
C7A-C6A-C5A-C4A	175.7(4)	-178.93	Н2А-С2А-С3А-С4А	179.2	179.09
C1A-C6A-C5A-Cl2A	-178.8(3)	-179.46	Н2А-С2А-С3А-НЗА	-0.8	-0.6
C1A-C6A-C5A-C4A	-1.0(6)	-0.89	С5А-С4А-С3А-С2А	-0.6(8)	0.09
C7A-C6A-C1A-Cl1A	5.0(5)	0.80	С5А-С4А-С3А-НЗА	179.5	179.80
C7A-C6A-C1A-C2A	-177.2(4)	178.46	Н4А-С4А-С3А-С2А	179.5	179.93
C5A-C6A-C1A-Cl1A	-178.1(3)	-177.09	Н4А-С4А-С3А-Н3А	-0.4	-0.351

Atoms	Torsion Angl	es ()	Atoms	Torsion Angles ()	
	XRD	DFT		XRD	DFT
C16A-O3A-C15A-C10A	-167.5(3)	-179.36	C7A-C6A-C1A-Br1A	-0.8(6)	-0.11
C16A-O3A-C15A-C14A	12.3(5)	-0.65	C7A-C6A-C1A-C2A	179.8(4)	-179.91
С15А-ОЗА-С16А-Н16А	-70.9	61.81	C5A-C6A-C1A-Br1A	179.6(3)	179.84
С15А-ОЗА-С16А-Н16В	169.1	-179.57	C5A-C6A-C1A-C2A	0.1(6)	0.04
С15А-ОЗА-С16А-Н16С	49.2	-60.83	C7A-C6A-C5A-C4A	-177.6(4)	179.99
C17A-O2A-C11A-C10A	-177.3(4)	177.15	C1A-C6A-C5A-C4A	2.1(6)	0.02
C17A-O2A-C11A-C12A	4.4(6)	-4.75	С1А-С6А-С5А-Н5А	-177.9	179.69
С11А-О2А-С17А-Н17А	-67.7	63.40	Н4А-С4А-С5А-С6А	176	179.95
С11А-О2А-С17А-Н17В	172.3	-177.91	C3A-C4A-C5A-C6A	-4.1(7)	-0.05
С11А-О2А-С17А-Н17С	52.4	-59.35	Н4А-С4А-С3А-С2А	-176.1	179.99
O1A-C9A-C10A-C15A	-97.2(5)	117.91	Н4А-С4А-С3А-Н3А	3.8	0.02
O1A-C9A-C10A-C11A	81.7(5)	-60.36	С5А-С4А-С3А-С2А	3.9(7)	0.01
C8A-C9A-C10A-C15A	83.2(5)	-63.31	С5А-С4А-С3А-НЗА	-176.1	-179.96
C8A-C9A-C10A-C11A	-97.9(5)	118.40	O2A-C11A-C12A-H12A	-1	1.58
O1A-C9A-C8A-C7A	169.4(4)	4.00	O2A-C11A-C12A-C13A	179.0(4)	-178.16
О1А-С9А-С8А-Н8А	-10.6	-176.96	С10А-С11А-С12А-Н12А	-179.3	179.59
С10А-С9А-С8А-Н8А	169	4.29	C10A-C11A-C12A-C13A	0.7(6)	-0.16
O3A-C15A-C10A-C9A	-0.7(5)	1.00	С6А-С7А-С8А-С9А	-179.6(4)	178.92
O3A-C15A-C10A-C11A	-179.6(3)	179.31	С6А-С7А-С8А-Н8А	0.4	-0.03
C14A-C15A-C10A-C9A	179.5(4)	-177.74	Н7А-С7А-С8А-С9А	0.4	-1.21
C14A-C15A-C10A-C11A	0.6(6)	0.56	Н7А-С7А-С8А-Н8А	-179.6	179.82
O3A-C15A-C14A-H14A	0.6	179.31	C15A-C14A-C13A-C12A	-0.8(7)	-0.13
С10А-С9А-С8А-Н8А	169	4.29	С15А-С14А-С13А-Н13А	179.2	179.93
O3A-C15A-C14A-C13A	-179.4(4)	-178.98	H14A-C14A-C13A-C12A	179.2	-179.63
С10А-С15А-С14А-Н14А	-179.6	179.14	Н14А-С14А-С13А-Н13А	-0.8	0.43
C10A-C15A-C14A-C13A	0.4(6)	-0.34	Br1A-C1A-C2A-H2A	0.4	-179.90
C9A-C10A-C11A-O2A	1.5(5)	-3.84	Br1A-C1A-C2A-C3A	-179.6(4)	-179.90
C9A-C10A-C11A-C12A	180.0(4)	178.00	С6А-С1А-С2А-Н2А	179.8	179.89
C15A-C10A-C11A-O2A	-179.6(3)	177.85	C7A-C6A-C1A-Br1A	-0.8(6)	-0.11
C15A-C10A-C11A-C12A	-1.1(6)	-0.30	C7A-C6A-C1A-C2A	179.8(4)	-179.91
С1А-С6А-С7А-Н7А	-30.4	179.33	H12A-C12A-C13A-C14A	-179.7	-179.36
C1A-C6A-C7A-C8A	149.6(4)	-0.80	Н12А-С12А-С13А-Н13А	0.3	0.55
С5А-С6А-С7А-Н7А	149.2	-0.63	С1А-С2А-С3А-С4А	-1.9(7)	0.05
C5A-C6A-C7A-C8A	-30.8(6)	-179.22	4		
C6A-C1A-C2A-C3A	-0.2(7)	-0.09	4		
C11A-C12A-C13A-C14A	0.3(7)	0.38	4		
C11A-C12A-C13A-H13A	-179.7	-179.68	4		
Н2А-С2А-С3А-С4А	178.1	-179.93			

Figure S4: Anisotropic displacement parameter (ADP) plot for HK1and HK2 strucutres

HK1

d i

Figure S5: The 2D fingerprint plots representation of Hirshfeld surface interaction for HK1 and HK2

Figure S6: Shape Index map for HK1 and HK2 indicating pi-pi interactions with the formation of blue and red triangles, which is encircled in black colour

Figure S7: Electrostatic potential surface plot of HK1 and HK2 indicating nucleophile attack regions

Figure S8: The 3-D pie chart representation of fingerprint plot interaction with respect to elements present in a molecule

HK1					HK2				
Inside Atoms	Outside	e Atoms	5		Inside Atoms	Outsid	e Atoms		
	Н	C	0	Cl		Н	С	0	Br
Actual Contacts (C _{XX} and C _{XY})									
Н	37.9	-	-	-	Н	42.5	-	-	-
С	13	5.6	-	-	С	17.6	6.7	-	-
0	18.2	0.9	0.0	-	0	18.7	0.0	0.0	-
Cl	16.4	5.3	0.0	2.9	Br	9.7	2.9	1.8	0.0
Total Observed	85.5	8.8	0.0	2.9	Total Observed	88.5	9.6	18	0.0
%					%Contribution				
Contribution									
Surface % (S _X)	61.7	15.2	9.5	13.75	Surface % (S _X)	65.5	16.95	10.25	7.2
Random Contact	ts % (R _{XX}	x and R	xy)						·
Н	38.06	-	-	-	Н	42.90	-	-	-
С	18.75	2.31	-	-	С	22.20	2.87	-	-
0	11.72	2.88	0.90	-	0	13.42	3.47	1.05	-
Cl	16.96	4.18	2.61	1.89	Br	9.42	2.44	1.42	0.51
Enrichment Rati	o E (E _{XX}	and E _X	y)					•	
Н	0.99	-	-	-	Н	0.99	-	-	-
С	0.69	2.42	-	-	С	0.79	2.33	-	-
0	1.55	0.31	0.00	-	0	1.39	0.0	0.0	-
Cl	0.96	1.29	-	1.53	Br	1.02	1.18	1.26	0.0

 Table S4: Hirshfeld surface contacts (actual and random) along with enrichment ratios for HK1 and HK2 structures

Table S5: Second order natural bond orbital perturbation theory analysis corresponding to fock matrix revealing Lewis and non-Lewis interactions

Donor (i)	ED (i)(e)	Acceptor(j)	ED (j)(e)	E ²	ΔE ^{a.}	F(i,j) ^b
				kJ/mol		a.u.
		HK1				
π(C15A-C14A)	1.652	$\pi^*(C13A-C12A)$	0.373	109.36	0.28	0.077
		$\pi^{*}(C11A-C10A)$	0.411	64.72	0.29	0.060
σ(C14A-C13A)	1.974	σ* (C17A-H17G)	0.018	36.52	3.42	0.154
π(C13A-C12A)	1.708	$\pi^*(C15A-C14A)$	0.408	59.87	0.28	0.058
		$\pi^{*}(C11A-C10A)$	0.411	101.71	0.28	0.076
σ(C13A-H13A)	1.978	σ* (C17A-H17H)	0.009	43.72	3.04	0.160
π(C11A-C10A)	1.657	π [*] (C15A-C14A)	0.408	103.63	0.28	0.076
		$\pi^*(C13A-C12A)$	0.373	65.605	0.28	0.060
π(C8A-C7A)	1.853	π [*] (C9A-O1A)	0.138	75.89	0.31	0.067
π (C4A-C5A)	1.979	π [*] (C17A-H17C)	0.018	34.51	3.45	0.151
LP(3) Cl 1A	1.922	$\pi^*(C1A-C2A)$	0.377	53.05	0.32	0.062
$\pi(C6A-C5A)$	1.652	$\pi^*(C1A-C2A)$	0.390	78.11	0.28	0.065
		$\pi^*(C3A-C4A)$	0.297	81.67	0.30	0.068
π (C1A-C2A)	1.683	$\pi^*(C6A-C5A)$	0.429	80.58	0.28	0.068
		$\pi^*(C3A-C12A)$	0.297	79.16	0.30	0.067
π (C3A-C4A)	1.656	$\pi^*(C6A-C5A)$	0.429	89.49	0.27	0.069

		$\pi^*(C1A-C2A)$	0.390	87.52	0.27	0.068
LP(2)O1A	1.879	σ* (C10A-C9A)	0.065	85.77	0.67	0.106
		σ* (C9A-C8A)	0.063	80.41	0.69	0.104
LP(2)O3A	1.960	σ* (C15A-C14A)	0.027	28.07	1.10	0.077
		$\pi^{*}(C15A-C14A)$	0.408	133.38	0.33	0.098
		σ* (C16A-H16F)	0.018	21.88	0.68	0.055
		σ*(C16A-H16E)	0.019	23.38	0.68	0.057
LP(1)O2A	1.959	σ*(C12A-C11A)	0.027	24.65	1.10	0.076
LP(3) Cl 2A	1.924	$\pi^*(C6A-C5A)$	0.429	53.80	0.32	0.063
LP(2)O2A	1.840	$\pi^{*}(C11A-C10A)$	0.411	117.61	0.35	0.094

Donor (i)	ED	Acceptor(j)	ED	E ²	$\Delta \mathbf{E}^{\mathbf{a}}$.	F(i,j) ^b
	(i)(e)		(j)(e)	kJ/mol		a.u.
		HK2				
π(C11A-C12A)	0.826	$\pi^{*}(C13A-C14A)$	0.033	58.15	0.28	0.077
		$\pi^*(C15A-C10A)$	0.013	32.38	0.29	0.060
π(C13A-C14A)	0.854	$\pi^*(C11A-C12A)$	0.013	30.04	0.28	0.058
		$\pi^{*}(C15A-C10A)$	0.013	50.50	0.28	0.076
π(C15A-C10A)	0.826	$\pi^*(C11A-C12A)$	0.013	51.50	0.28	0.076
		$\pi^*(C13A-C14A)$	0.007	33.17	0.28	0.060
π(C8A-C7A)	0.927	$\pi^*(C9A-O1A)$	0.007	40.29	0.30	0.069
		$\pi^*(C6A-C1A)$	0.018	27.82	0.26	0.057
π (C6A-C1A)	0.975	$\pi^*(C5A-C4A)$	0.005	45.31	0.32	0.076
		$\pi^*(C3A-C2A)$	0.009	24.09	0.53	0.070
$\pi(C5A-C4A)$	0.819	$\pi^*(C6A-C1A)$	0.018	37.36	0.26	0.062
		$\pi^*(C3A-C2A)$	0.005	28.28	0.51	0.075
π (C3A-C2A)	0.833	$\pi^*(C6A-C1A)$	0.018	48.82	0.26	0.073
		$\pi^*(C5A-C4A)$	0.005	26.10	0.31	0.057
σ (C1A-Br1A)	0.988	σ*(O2A-C17A)	0.016	28.07	1.31	0.121
LP(2)O1A	0.939	σ* (C10A-C9A)	0.0413	42.96	0.67	0.106
		σ* (C9A-C8A)	0.032	39.95	0.69	0.104
LP(2)O2A	0.917	$\pi^*(C11A-C12A)$	0.013	66.35	0.34	0.099
LP(2)O3A	0.920	$\pi^{*}(C15A-C10A)$	0.013	58.61	0.35	0.094
LP(3Br 35	0.965	π [*] (C10-C15)	0.018	21.42	0.30	0.055

 $E^{(2)}$ is the stabilization energy in kJ/mol. ^a Energy difference between donor orbital (i)and acceptor (j) orbital $\Delta E = E(i)-E(j)$ a.u. ^b F(i,j) is the Fock matrix element between i^{th} and j^{th} NBO orbitals in a.u. unit

Where, $\rho_{BCP} = Electron$	Malaasha	111/1	
Density; $G(r)=$	Niolecules	HKI	
Lagrangian Kinetic	Interactions	C8-H29•••Cl28	C8
Energy; K(r)=	BCP	45	
Hamiltonian Kinetic	BCP type	(3,-1)	
Energy; $V(r)=$	$\rho_{\mathrm{BCP}}(\mathrm{a.u.})$	0.0106	
Potential Energy	G(r) (a.u.):	0.00827	
Density; $E(r) = Energy$	K(r) (a.u.):	-0.00192	
Density; $V^2\rho =$	V(r) (a.u.):	-0.00629	
Laplacian of Electron	-G(r)/V(r):	1.314	
Density; ESP=	$ \lambda_1 /\lambda_3$	0.064	
B E= Binding Energy	E(r)	0.00198	
D.L- Dilding Energy	$\nabla^2 \rho$ (a.u.)	0.0410	
	Total ESP (a.u.)	0.0299	
	Eigenvalues	0.0525,-0.00815	0.0685
	$(\lambda_3 > 0, \lambda_2 < 0, \lambda_1 < 0)$,-0.00336	
	Ellipticity of electron	1.42	
	density(ε)		
	H-bond B.E (kJ/mol):	-12.97	

Table S6: Quantum theory of atoms in molecules (QTAIM)derived topological analysis with respective bond critical points for the studied compounds

Table S7: Evaluation of physicochemical and ADME-T descriptor parameters

Oral Rat Acute Toxicity (LD50)(mol/kg) 2.604 2.349

Figure ST1: Boiled Toxicity (LOAEL) **Figure ST1**: Boiled egg my/day) hER(FrishArd) ME physicochenaical property radars for HK1and HK2

nekgi himibnor i Prijsios	anan Moar bi	op of Nor adda
hERG II inhibitor	No	No
Hepatotoxicity	No	No
Skin Sensitisation	No	No
T. Pyriformis (log ug/L)	1.118	1.147
Minnow (log mM)	-2.158	-1.99
Druglikeliness		
Bioavailability score	0.55	0.55
Synthetic accessibility	2.88	2.81
Lead likeliness (1 violation)	XLOGP3>	XLOGP3>
	3.5	3.5
Pains	0	0

 Table S8: Comparison of docking results showing similar interacting residues with the reported literature (Residues bolded in black for MAO-B and bolded red for MAO-A)

ID			Energy (kcal/mol)	ce	
HK1	MAO-A	TYR69 ,ALA68,MET445, TYR444 ,GLY443,VAL3 03, TYR197 ,ASN181, ILE180 ,GLU67,GLY66,LYS 305,ARG51	-9.76	Present Work	
	MAO-B	SER59. TYR60,TYR398, GLY434, TYR435, MET4 36,ARG42,THR43, GLN206 ,CYS397, LEU171, CYS172, ILE198, TYR188	-9.50		
HK2	MAO-A	TYR69,ALA68,MET445,TYR444,GLY443,VAL3 03,TYR197,ASN181,ILE180,GLY67,GLY66,LYS 305,ARG51,VAL70,GLN215,PHE352,CYS406,T YR407	-10.55		
	МАО-В	TYR60 ,SER59,TRP388, TYR435 ,GLY434,MET43 6,ARG42,THR43, GLN206 ,CYS397, LEU171 , CYS172,ILE198,TYR188,TYR398 ,VAL294,LYS 296,GLY58,GLY57	-9.88		
AC4	МАО-В	LEU88, PHE99, PRO104, TRP119, LEU164, LEU167, PHE168, LEU171, ILE198, ILE199, ILE316, TYR326, LEU328, PHE343, TYR398, TYR435	-9.5	107	
O23	MAO-A	TYR444,TYR407	-8.593	38	
	MAO-B	TYR435,TYR398,ILE199	-10.220		
E7	MAO-A	PHE208, TYR444,TYR407	-7.914	39	
	MAO-B	ILE199,ILE316, LEU171,TYR435,TYR398	-10.032		
TB8	MAO-A	PHE352, TYR407,TYR444,ILE180 ,ILE335,LEU3 37,PHE352, GLY 74, ILE207, PHE208,GLU216, TRP441	Not mentioned	108	
	MAO-B	ILE199			
51	MAO-B	TYR435,TYR398,TYR60 ,TYR326,PHE168,ILE1 99, LEU171,ILE198,CYS172, GLN206 ,PHE343,TYR398	-8.8	109	
52	MAO-A	CYS323,THR336, ILE180 ,PHE208,ILE207,ASN18 1, TYR444,TYR407,GLN215 ,LEU337,VAL210,IL E335	+2.3	109	
	MAO-B	TYR326 ,TRP119, LEU171 ,PHE168, ILE198 , GLN 206 , TYR398 , TYR435 ,PHE343,ILE316,LEU167,I LE199,LEU164	-10.3		
Thiophe ne and furan Chalcon es	MAO-B	TYR435,TYR398	Not mentioned	110,111	
(R)- P5	MAO-B	TYR398,TYR435,LEU171,CYS172 ,ILE199,TYR 362,PHE103, PRO104, TRP119, ILE316	Not mentioned	35	
(S)-P5	MAO-B	TYR398 ,TYR435,LEU171 , CYS172 , ILE199, TYR362,PHE103, PRO104, TRP119, ILE316	Not mentioned		
MHC5	МАО-В	TYR326,TYR60, PHE99, PRO102, PHE103, PHE104, TRP119, LEU164, LEU167, PHE168, LEU171, CYS172, TYR188, ILE198, ILE199, GLN206, TYR398, TYR435, ILE316, LEU328, PHE343	-10.915	112	
MHC4	MAO-B	TYR326, TYR60 , PHE99, PRO102, PHE103, PHE104, TRP119, LEU164, LEU167, PHE168, LEU171, CYS172, TYR188, ILE198, ILE199,	-10.643	112	

		GLN206, TYR398, TYR435, ILE316, LEU328,		
		PHE343		
4b	MAO-A	PRO102,GLU84,TYR326,TRP119,PHE103	-9.75	113
		TYR197, TYR444, GLY443, ASN181, ILE180, LEU		
		337,ILE335,VAL91,PHE108,GLY110,ALA111,V		
		AL210,SER209,PHE208,ILE207, TYR69 ,MET350,		
		PHE352, LEU354,LEU97		
4a	MAO-A	TYR326,TRP119,PHE103, TYR197,TYR444,GLY	-9.52	113
		443,ASN181,ILE180,LEU337,ILE335,VAL91,PH		
		E108,GLY110,ALA111,VAL210,SER209,PHE208		
		,ILE207, TYR69, MET350, PHE352 ,LEU354,LEU9		
		7		
4d	MAO-A	TYR326,TRP119,PHE103, TYR197,TYR444,GLY	-9.46	113
		443,ASN181,ILE180,LEU337,ILE335,VAL91,PH		
		E108,GLY110,ALA111,VAL210,SER209,PHE208		
		,ILE207, TYR69 ,MET350, PHE352 ,LEU354,LEU9		
		7		
5-HT	MAO-A	TYR444, TYR407,GLN215,ILE180	Not	114
			mentioned	
	MAO-B	TYR435,TYR398,GLY206,LEU171	Not	114
			mentioned	
1	MAO-A	LEU97, PHE108, ALA111, ILE180, ILE325,	-11.66	115
		TYR69, TYR197, TYR407, TYR444 ,		
4 and $\overline{6}$	MAO-B	TYR60,PHE343,TYR398,TYR435,CYS172,GLN	-9.66,-10.56	115
		206, TYR188,LEU164,LEU167,PHE168,ILE199,IL		
		E316, TYR326		

Table S9: Comparison of dynamics results having similar interacting residues with the reported literature (Residues bolded in black for MAO-B)

Ligand	Target	Interacting Amino Acid Residues			Ligand	Protein	Ref.
ID	_	H-	Hydrophobic	Water bridge	RMSD	RMSD	
		bond			(Å)	(Å)	
HK1	MAO-A	LYS305,	TYR69,ILE180,VAL303	ALA68,TYR69,L	2.5	5	Present
		GLY66	,ILE335,PHE352,TRP39	YS218,VAL303,			
			7,TYR407,TYR444	LYS305,TYR407			
HK1	MAO-B	MET436	ILE198,ILE199,PHE34	SER59,TYR60,G	1.4	2.5	Present
			3,TRP388,TYR398,TY R435	LN206			
HK2	MAO-A	GLY67,	ARG51,GLY67,TYR69,	TYR69,TYR197,I	3.3	5	Present
		LYS305	LYS305,GLY443,MET4	LE207,LYS305,P			
			45	HE352,TRP397,T			
				YR407,GLY443,			
		CED50 T		TY R444	4.0	2.0	D
HK2	MAO-B	SEK39,1 VD60 C	GLY 38, SEK 39, IYK00, I I E 100 VAL 204 IVS20	GLY 58, SEK 59, I	4.8	2.8	Present
		I N206	6 TVR326 I EU328 ME	VS206 CI VA34			
		111200	T341 PHE343 TRP388	MET436			
			CYS397. TYR398.TYR4				
			35				
AC4	MAO-B	CYS172,	LEU88,	TYR435	3.5	4	107
		TYR435	PHE99,PRO104,LEU16				
			4,PHE168,LEU171, ILE				
			198,ILE199, ILE316, TY				
			R326, LEU328, PHE343 ,				
MUCE	MAOP	TVD200	I Y K398, I Y K435	ЦІ <u>500 С</u> У <u>5172</u> Т	2.5		112
MHC5	МАО-Б	TYK398, CVS172	67 PHF168 I FU171 U	VP188 II F108 I	5.5	-	115
		TVR435	F198 II F199 II F316 T	LE199 GLN206			
			YR326.PHE343.TYR39	TYR398.TYR43			
			8	5			
MHC4	MAO-B	GLN206	TYR60,PRO104,LEU16	HIS90,GLN206,	2.5	-	113
		,CYS172	4,LEU167,LEU171, ILE	TYR435			
		TYR435	199,ILE198,ILE316,TY				
	1440 D	CI MAACT	R326,PHE343,TYR398				116
RAS	MAO-B	GLN206,1	YR435,TYR398,LEU1/1,T	-	-	116	
		HE343,ILE198,GLY434,LEU328,TYK526,THK399,VA					
		99 SER59	200,11111 1 341 ,0L11191,AK				
SEI	MAO-B	GLN206 7	YR435.TYR398 .LEU171.7	YR60. CY8172 P	-	-	116
		HE343.11.1	E198.GLY434.LEU328.TV				
		L173,GLY	205, MET341, GLN191,AR(
		99.SER59	. , , ,				

Figure S12: Root mean square fluctuation (RMSF) plot of MAO protein