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Fig. S1 (Same as Figure 1 in the main manuscript) Schematics of (a) symmetric A1B1A2B2A3 pentaBCP 

and (b) symmetric B1A1B2A2B3 pentaBCP, where Nγ is degree of polymerization of γ type block in the 

polymer chain ((a) γ = {A1, B1, A2, B2, A3}, and (b) γ = {B1, A1, B2, A2, B3}), and the A and B monomers have 

the same monomer volume. The polymer design parameters for each pentaBCP are defined below the 

schematics. The fA is the overall volume fraction of A blocks in the polymer chain, and τA2
 is the volume 

fraction of the middle A2 block to the total A blocks for the A1B1A2B2A3 pentaBCP, and  τB2
 is the volume 

fraction of the middle B2 block to the total B blocks for the B1A1B2A2B3 pentaBCP. 
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Fig. S2 Relative free energies per segment (free energies per chain of length N) to the homogeneous 

disordered phase for the lamellae (L), double gyroid (DG), Fddd orthorhombic network (O70), hexagonal-

packed cylinder (C6), and body-centered cubic sphere (BCC) phases in the A1B1A2B2A3 pentaBCP melts at 

χN = 40 and τA2
 = 0.5.  
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Table S1 The end-to-end distance from MD Ree
MD, SCFT unit cell parameter Cuc

SCFT, the real-space length 

Lq* equivalent to the q* peak of the A domain structure factor, and the MD unit cell parameter Cuc
MD. The 

Ree
MDare sampled in the first simulation protocol at χN = 60 for each chain in the frames sampled from all 

three trials of each chain design. The Cuc
SCFT are given for the morphology predicted by SCFT at χN = 60. 

The Lq* are sampled in the second simulation protocol at χN = 120 from all sampled frames across three 

trials per chain design. The Cuc
MD, found as the quotient of Lq* and Ree

MD, are provided for comparison with 

Cuc
SCFT. Ree

MD and Cuc
SCFT

 are used to specify 𝐿uc for the second simulation protocol, and Lq* is used to 

specify the simulation scale for the third simulation protocol. For both sampled quantities, the standard 

deviation is given as the error. 
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Fig. S3 (a) Snapshot (red beads for A and blue beads for B monomers), (b) A-B isosurface, (c) A-B radial 

distribution function and (d) A domain structure factor SAA(q) of a melt of A1B1A2B2A3 pentaBCP chains 

with fA = 0.4, τA2
= 0.5, simulated with χN = 0. The A-B radial distribution function and structure factor 

are averaged across all sampled frames from three trials. 

In Fig. S3 we present representative snapshots, the A-B radial distribution function and A domain structure 

factor SAA(q) of a A1B1A2B2A3 pentaBCP melt simulated with unbiased MD simulations at χN = 0. Small A 

and B domains appear in the chain snapshot (Fig. S3a) and the isosurface (Fig. S3b); such domains occur 

due to random fluctuations in the distribution of each bead type as well as the proximity of similar beads 

created by the chain connectivity. The radial distribution function of A-B contacts is shown in Fig. S3c in 

for mixed melt of N = 50 pentaBCP chains. The height of the contact peak is 1.76 ± 0.06 with a 95% 

confidence interval (that is, ± two standard deviations). This value is used to distinguish disordered and 

disordered-microphase separated structures as outlined in section II.E of the main text. The A domain 

structure factor SAA(q) in Fig. S3d indicates the degree of microphase separation present even when no 

thermodynamic incompatibility exists (χN = 0) between beads of distinct types. The q values corresponding 
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to the bead diameter (Dbead) and the box side length (Lboxsize) are marked for comparison with the location 

of peaks in SAA(q).  

 

 

 

Fig. S4 The same phase diagrams as those shown in Fig. 2 in the main manuscript for the A1B1A2B2A3 

pentaBCPs, with phase boundaries (blue lines) overlaid on them. The phase boundaries were determined 

with linear interpolation using the grid points with ∆fA = 0.0025 and curve-fitting the resolved points with 

B-splines. 
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Fig. S5 Same figure caption as Fig. S4 but for B1A1B2A2B3 pentaBCPs.  
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Fig. S6 The spatial SCFT density distributions for the total A blocks (ϕ
A1

+ ϕ
A2

+ ϕ
A3

, red lines) and the total 

B blocks (ϕ
B1

+ ϕ
B2

 , blue lines) for the lamellar phases formed by the (a) ABA triBCP (τA2
 = 0.0), (b) 

A1B1A2B2A3 pentaBCPs (τA2
 = 0.4), and (c) BAB triBCP (τA2

 = 1.0) at χN = 35 and fA = 0.5, identified on 

the phase diagram in Fig. 2a of the main manuscript. The lamellar periods are (a) L = 1.197b, (b) L = 

0.715b, and (c) L = 1.197b. 

 

 

 

 

 

Fig. S7 The spatial SCFT density distributions for the total A blocks (ϕ
A1

+ ϕ
A2

+ ϕ
A3

, red line) and the total 

B blocks (ϕ
B1

+ ϕ
B2

, blue line) for the lamellar phases formed by the A1B1A2B2A3 pentaBCPs at fA = 0.5, 

τA2
= 0.4, and χN = 60, identified on the phase diagram in Fig. 2c of the main manuscript. The lamellar 

period is L = 0.838b. 
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Fig. S8 The same phase diagram shown in Fig. 2c in the main manuscript for the A1B1A2B2A3 pentaBCPs 

at χN = 60, with the two vertical lines (fA = 0.40 and fA = 0.45) overlaid to highlight the reentrant phase 

transitions.  
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Fig. S9 The combined phase diagrams of the A1B1A2B2A3 pentaBCPs and the B1A1B2A2B3 pentaBCPs in the 

Fig. 2 and Fig. 3 in the main manuscript, respectively, after redefining the A and B definitions in the 

B1A1B2A2B3 pentaBCPs. 
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SCFT Calculations for Fraction of Different Chain Conformations 

 

The previous SCFT papers1-3 present how to compute the fraction of looping and bridging configurations 

of one block in block copolymers by solving partial partition functions with modified initial conditions 

defined by Voronoi unit cells. The method requires construction of Voronoi cells within the morphology 

and propagating the partial partition function (by solving the modified diffusion equation in SCFT) from 

the initial condition corresponding to the one end of the interest block constrained to a specific Voronoi 

cell. However, computing the fraction of chain conformations in Fig. S10 requires propagating the partial 

partition functions for the three consecutive blocks (i.e., second, third and fourth blocks in the pentaBCP) 

with a series of different initial conditions, which are not independent as in the previous calculations.1, 2 

Here, instead of evaluating the three blocks, we used a simpler approach by considering only two equal 

segments of the chain divided by the mid-point of the chain (the mid-point of the middle A block). Both 

segments have one free end and one junction end, which are denoted by the three green dots in Fig. S10. 

This approach reduces complexity in partial partition function calculations by categorizing the 6 distinct 

conformations into four conformations (1. Looping-1 and Looping-2, 2. Hairpin, 3. Hybrid-1 and Hybrid-

2, and 4. Bridging), which allows use of independent initial conditions for the partial partition function 

calculations. The detailed mathematical SCFT formalism is explained as follows. Here, we present the 

fractions of the ABABA pentaBCP conformations in the L morphology calculated by the SCFT partial 

partition functions.  

 

 

 



12 

 

 

Fig. S10 Schematics of possible A1B1A2B2A3 pentaBCP conformations in the lamellar morphology with the 

three Voronoi unit cells V1, V2, and V3. 

 

 

The first step is to determine the Voronoi unit cells in the SCFT morphology, which is straightforward in 

L morphology. Fig. S10 illustrates the three Voronoi unit cells (V1, V2, and V3) by which the initial 

conditions of the partial partition functions corresponding to the two segments will be determined as follows. 

The initial condition of partial partition function q̅
n
(r, s) with the first free end (s = 0) constrained to the 

nth unit cell is defined as  

 

                                                q̅
n
(r, 0) = {

1,  if r ∈ nth Voronoi cell

0,  otherwise                     
                         (1) 

 

Similarly, the initial condition of the conjugate partial partition function q̅
n
†(r, s) with the last free end (s 

= N) constrained to the nth unit cell is defined as       

 

q̅
n
†(r, N) = {

1,  if r ∈ nth Voronoi cell

0,  otherwise                     
                        (2) 
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With precalculated converged mean field solutions ωA  and ωB , the two partial partition functions are 

evaluated by solving the modified eqns (1) and (2) in the manuscript.  

Since the modified partial partition functions q̅
n
(r, s) and q̅

n
†(r, s) are not periodic, the large simulation 

cell sizes, which are 8 times the lamellar unit cell sizes, are adopted to remove the finite size effect arising 

from periodic boundary condition. We confirmed the simulation cell size is large enough with negligible 

errors in the fraction calculations. We also justified the simulation sizes by confirming that the distribution 

of the partial partition functions propagated from the initial condition constrained in a Voronoi unit cell 

remains away from the simulation boundaries (r = 0 and r = L) as shown in Fig. S11.  

 

Fig. S11 The SCFT partial partition functions calculated for the fractions of different chain conformations 

in Fig. S10. The blue and red solid lines are the initial conditions for the partial partition functions 

constrained to the Voronoi unit cells V1 and V3, respectively. The blue and red dashed lines are the 

distributions of propagated partial partition functions, which are rescaled in q values to present in the same 

plot.     
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Once the partial partition functions are computed, the probability of both free ends and middle point of the 

chain being in the same Voronoi unit cell (V2) is obtained by 

vLooping1,2=
1

QVcell

∫ dr q̅
2
(r, s = N/2) q̅

2

†(r, s = N/2)
⬚

V2 cell

                                        (3) 

where Q is the total partition function explained in section II.B. of the manuscript and Vcell are the Voronoi 

unit cell volume. Since the systems we calculated are in strongly segregated regime (χN = 60) where most 

A and B blocks reside in their respective domains, the probability in eqn (3) represents the fraction of 

looping conformations where both free ends and middle point of chain are in the same Voronoi unit cell 

(Looping-1 and Looping-2 in Fig. S10).  

In the same way, the fraction of hairpin conformation where the middle point and the end points are in 

different Voronoi unit cell is calculated as follows, 

vHairpin=
1

QVcell

∫ dr q̅
1
(r, s = N/2) q̅

1

†(r, s = N/2)
⬚

V2 cell

 

 + 
1

QVcell

∫ dr q̅
3
(r, s = N/2)q̅

3

†(r, s = N/2)
⬚

V2 cell

                                        (4) 

 

Due to the symmetry in the converged mean field solutions ωA and ωB, the computation of the first and 

the second terms in eqn (4) give the same value.  

The fraction of hybrid chain conformations (Hybrid-1 and Hybrid-2), where one free end and middle point 

are in the same Voronoi unit cell and the other end is in the other Voronoi unit cell, is calculated as follows,  

vHibrid1,2 = 
1

QVcell

∫ dr q̅
2
(r, s = N/2) q̅

3

†(r, s = N/2)
⬚

V2 cell

 

 + 
1

QVcell

∫ dr q̅
3
(r, s = N/2)q̅

2

†(r, s = N/2)
⬚

V2 cell

 

+ 
1

QVcell

∫ dr q̅
1
(r, s = N/2)q̅

2

†(r, s = N/2)
⬚

V2 cell
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+ 
1

QVcell

∫ dr q̅
2
(r, s = N/2)q̅

1

†(r, s = N/2)
⬚

V2 cell

                                                 (5) 

 

The symmetry in the mean field solutions and in the pentaBCP architecture makes all terms in the right-

hand side of eqn (5) have the same value. 

Lastly, the fraction of the bridging conformation where all three points are in the different Voronoi unit cells 

is calculated as follows,  

vBridging=
1

QVcell

∫ dr q̅
1
(r, s = N/2) q̅

3

†(r, s = N/2)
⬚

V2 cell

 

 + 
1

QVcell

∫ dr q̅
3
(r, s = N/2)q̅

1

†(r, s = N/2)
⬚

V2 cell

                                        (6) 

Again, the symmetry in the pentablock copolymer architecture makes the values of first and the second 

term in eqn (6) same. Fig. S12, presents the computed fractions for each conformation at different τA2 
 

values for ABABA pentaBCP at fA = 0.4 and χN = 60. The equilibrium phases at each τA2 
in SCFT are L 

(τA2 
= 0.4), L (τA2 

= 0.5), and DG (τA2 
= 0.6), but we present the fractions calculated in L phase for the 

comparison with MD simulation results in Fig. 7 of the main manuscript. Assuming that both loop and 

hairpin conformations give low Ree values, the hybrid conformations give intermediate Ree values, and 

bridging conformations give the highest Ree value, the SCFT fraction data can be directly compared with 

the proportion of each population obtained by MD simulation in Fig. 7.  
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Fig. S12 Percentage bar charts for the fractions of different chain conformations (obtained from SCFT 

approach) described in Fig. S10. The fractions of the A1B1A2B2A3 pentaBCP conformations in the L 

morphology are calculated for τA2
= 0.4, 0.5, and 0.6 at fA = 0.4 and χN = 60.       

 

The SCFT calculations results (Fig. S12) give qualitative agreement with the MD simulation data (Fig. 7d-

7f); the fractions of high end-to-end distance Ree conformation (bridging) are always the smallest, and the 

fractions of the medium Ree conformation (hybrids) are always the largest. However, there are some 

differences between SCFT and MD simulation results; in SCFT the fractions of the low Ree conformations 

(loops and hairpins) and the fractions of the medium Ree conformations (hybrids) are similar with ~ 40 – 

50% while in the MD simulations there are large differences between low Ree fractions (ranging from 27 – 

30%) and the medium Ree fractions (~ 63%). For the low Ree conformations in Fig. S12, the hairpin 

conformation fractions are ~10% and the looping conformations are the majority conformations with ~30%, 

which supports our assumption in Fig. 7 that the low Ree populations mostly consist of chains with the 

looping conformations. In addition, the small fractions of high Ree conformation (bridging) in Fig. S12 

support the assumption in the hypothesized conformations in Fig. 4f-l of the main manuscript that the 

possibility of chain conformations with two B blocks bridging can be neglected.  
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Fig. S13 Examples of a few of the possible A1B1A2B2A3 pentaBCP conformations in the C6 morphology (top 

view) within the 7 Voronoi unit cells. 

 

Fig. S13 illustrates a small part of an exhaustive list of chain conformations defined by different Voronoi 

unit cells in the C6 morphology. Depending on which Voronoi unit cell the chain ends reside, the chain 

conformations have different Ree from low to high. Even though some chain conformations in Fig. S13 have 

the same probability due to the rotational symmetry in the C6 morphology, evaluating the chain 

conformations in SCFT requires enumerating all possible initial conditions belonging to the different 

Voronoi unit cells, which becomes complicated with complex chain architecture or the number of Voronoi 

unit cell initial conditions increases as in the C6 morphology versus L morphology.  

In contrast to the above complexities in SCFT calculations, MD simulations provide a straightforward way 

to evaluate the population of chain conformations by analyzing the distribution of chains from low to high 

Ree. As shown in Fig. 7 of the main manuscript, the distribution of Ree can be extracted directly from 
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sampling the chains in MD simulations while SCFT requires separate calculation for each chain 

conformation.  

 

 

Fig. S14 Comparison of morphologies predicted by (a) SCFT and (b) MD simulation for A1B1A2B2A3 

pentaBCPs and by (c) SCFT and (d) MD simulation for B1A1B2A2B3 pentaBCPs. Chain designs are chosen 

to closely match the fA, τA2
, and τB2

 values on the phase diagram from SCFT. The legend on top of the plot 

connects the symbols to the morphologies. The schematic representation of each ordered morphology can 

be found in Table 1 of the main paper. We note again that the “disordered microphase” (DM) occurs when 

the height of the contact peak of the A-B radial distribution function of a given melt is ≤ 1.76 ± 0.06 without 

the formation of an ordered morphology. 

 

The morphologies found to be the energy minimum in SCFT at χN = 35, 40, and 60 for chains with fA = 

0.33 and 0.4 and τA or B2
 from 0.2 to 0.8 are shown in the left column in Fig. S14. The morphologies 

observed in MD simulations at χN = 90, 100, 110, and 120 for chains with fA ~ 0.33 and 0.4 and τA or B2
 ~ 

0.2, 0.4, 0.5, 0.6, and 0.8 are displayed on the right column in Fig. S14. The SCFT calculations predict 
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ordered morphologies at χN = 60, while for MD simulations ordered morphologies only show up at higher 

χN. This discrepancy in the ODT in SCFT vs. MD simulation is well-documented in the literature and is 

attributed to the density fluctuations which are present in the particle-based simulations but absent in the 

SCFT calculations.4-8 These fluctuations have the effect of increasing (χN)
ODT

 as well as increasing the 

thermodynamic favorability of high curvature phases like DG near the ODT.6, 7 Mostly, there is good 

correspondence between the sequence of morphologies observed with SCFT calculations and MD 

simulations with increasing τA or B2
 for the highest χN for each method (χN = 60 for SCFT and χN = 120 

for MD simulation). We will discuss the comparison of results from SCFT and MD simulations in detail 

next.  

 

For A1B1A2B2A3 pentaBCPs at χN = 60 with fA ~ 0.33, SCFT (Fig. S14a) predicts the C6 phase to be 

formed at all values of τA2
; in contrast, in MD simulations (Fig. S14b), only two of the five simulated 

designs with the same sequence and fA formed ordered morphologies at χN = 120 and that ordered 

morphology is C6.  

 

For A1B1A2B2A3 pentaBCPs at χN = 60 with fA ~ 0.4 as τA2
 is increased from 0.2 to 0.8 SCFT (Fig. 

S14a) predicts morphologies C6 → L→ DG → C6. With MD simulations (Fig. S14b) we see a similar 

reentrant sequence DG → L → C6 at χN = 120. We note that within the three trials of MD simulations τA2
 

= 0.2 and 0.8, we observed both C6 and DG. We use additional tests as described to conclude that these 

morphologies are similar in free energy for these designs.  

 

For the B1A1B2A2B3 pentaBCPs at χN = 60 with fA ~ 0.33, SCFT (Fig. S14c) predicts the sequence L → 

C6 → DG → L, while MD simulations (Fig. S14d) predict the sequence L → DM → L at χN = 120.  

 

For the B1A1B2A2B3 pentaBCPs at χN = 60 with fA ~ 0.4, both SCFT (Fig. S14c) and MD simulations 

(Fig. S14d) predict the L morphology at all values of τB2
 that we studied.  

 

We note that for systems with fA ~ 0.4, both pentaBCP sequences were fully ordered at χN = 120 and ordered 

at lower χN than the pentaBCPs with fA ~ 0.33, in accordance with the trends in the SCFT data, despite the 

discrepancy between both methods in the χN required for ordering. 
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When multiple trials of a regular MD simulations show possibility of different morphologies (e.g., 

occurrences of C6 and DG) or if there is a clear disagreement in the ordered morphology between SCFT 

and MD simulations, we use our newly developed high-throughput computational framework RAPSIDY - 

Rapid Analysis of Polymer Structure and Inverse Design strategY - described next. 

 

Rapid Analysis of Polymer Structure and Inverse Design strategY (RAPSIDY) 
 

The RAPSIDY procedure allows us to initialize MD simulations using configurations where chains with a 

specific polymer design are pre-placed within canonical morphologies to directly evaluate stability of a 

particular phase (e.g., double gyroid) for that polymer design without having to use slow, global 

optimization procedures such as simulated annealing used in traditional MD. Our methodology allows us 

to rapidly screen the stability of canonical phases (e.g., lamellar, double gyroid, hexagonal-packed cylinders) 

or non-canonical phases (e.g., user defined morphologies) with a two orders of magnitude acceleration in 

computation time compared to traditional MD. We also apply this accelerated stability analysis to address 

the long-standing problem of incommensurability, which distorts the self-assembled structure in BCP melts 

and is challenging to prevent. In the following section, we briefly summarize the initialization process but 

encourage readers to refer to our separate publication for details.9 

 

Chains within a random melt are biased into conformations that form a desired morphology using an 

external potential, Vext, defined by a known, reference density field, φref. The reference density field is a 

discretized 3D function, φref = φref (x, y, z), which defines the number density of each species at each mesh 

point. This guiding field is inspired by previous work of Nowak and Escobedo,10 Müller and Daoulas11 and 

Lequieu 12 who have used similar forms. 

Vext=A ∑ (φ
i
-φ

i
ref)

2

M

i

 (7) 

Here, φ
i
 and φ

i
ref refer to the density of the simulation and reference field, respectively, at mesh point i, 

M is the total number of mesh points, and A is a user-defined scaling constant. When the simulation density 

is far away from the target morphological density field, the system potential energy is heavily penalized, 

but as the system approaches the target morphological density, then the field tends to 0. The scaling constant, 

A, is chosen such that the forces exerted on the beads are comparable in magnitude to the forces exerted by 

the existing bonded and non-bonded interactions for numerical stability. In our case, we found A = 100 to 

be a reasonable tradeoff between numerical stability and equilibration speed. During this initialization 
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process, we also modify the non-bonded Lennard Jones (LJ) potential of the system by capping to maximum 

pairwise energy to the value obtained at 0.8d. This modified non-bonded potential allows beads and chains 

to overlap which in turn significantly accelerates the initialization process by allowing chain movements 

that are unphysical with a traditional LJ potential. The combination of the external guiding potential coupled 

with force-capped LJ potential allows all chains to settle within their desired morphologies within ~103 

timesteps. After chains settled within their desired morphologies, the external potential and force-capping 

is turned off to allow the system and the chains to naturally evolve to their (global) free energy minima. We 

compare the scattering profiles of the morphology at the beginning and end of equilibration to determine if 

the biased morphology was retained. Reference density fields for the canonical phases tested (L, C6, and 

DG) are defined from their mathematical structure and their respective derivations can be found in our 

corresponding publication.9  

 

RAPSIDY also addresses one of the long-standing challenges associated with conducting periodic MD 

simulations of block copolymers where the box size needs to be an integer multiple of the periodicity of the 

stable morphology which is not known a priori. Our future publication presenting RAPSIDY will discuss 

the various applications of this approach. Here, we present one example application of RAPSIDY to 

determine the equilibrium morphology of a given chain design and thereby resolve the discrepancy between 

predictions from SCFT calculations and MD simulations or variability in morphology predictions from 

multiple trials of the same system. 
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Fig. S15 Snapshots of (a) lamellae (L) and (b) double gyroid (DG) trajectories initialized using biased MD 

for A1B1A2B2A3 pentaBCP with fA= 0.4 and τA2
 = 0.6 at χN =120 (red denotes A and blue denotes B). The 

system initialized as a L structure (as predicted by MD simulations) rapidly equilibrates and remains in the 

initial morphology after 10,000τ. However, when the system is initialized as DG (as predicted from SCFT), 

the system transitions towards a L morphology with identical domain spacing (~10d) to that obtained from 

(a) and from traditional (unbiased) MD. This confirms that with particle-based simulations for this design, 

the L morphology is more stable than DG morphology.  

 

For A1B1A2B2A3 pentaBCP with fA= 0.4 and τA2
 = 0.6, the SCFT prediction and MD simulation prediction 

at the highest χN values do not agree; SCFT predicts DG while MD simulation predicts L. In Fig. S15 we 

show simulation snapshots over the course of 10,000τ with RAPSIDY method starting with L and DG 

morphologies for polymer design fA= 0.4 and τA2
 = 0.6 at a high segregation strength of χN = 120. The 

system initiated as a L structure rapidly equilibrates and remains within the initial prescribed morphology 

after 5,000τ and 10,000τ. However, the system initiated as DG quickly transitions away from DG (after 

5,000τ) towards an L morphology (after 10,000τ) with identical domain spacing (~10d) to that obtained by 

the previous biased initiation and traditional MD. The above observations are consistent over three trials 

and shows that DG is not stable (or L is more stable than DG) even at a high segregation strength of χN = 

120. The L morphology is also stable at lower segregation strengths, including χN = 90, 100, and 110. For 

all other sequence designs (fA = 0.4, τA2
 = 0.2, 0.4, 0.5, 0.8) at χN = 120, we found that the morphologies 

predicted by SCFT and MD were stable over 10,000τ after biased initialization; this includes both the C6 
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and DG morphologies predicted by SCFT and MD, respectively, for the pentaBCP with τA2
 = 0.2. Our 

rapid initialization procedure suggests that discrepancies between SCFT and traditional MD predicted 

phases are likely not due to kinetic trapping by our annealing protocol but rather by fundamental differences 

between particle-based and mean-field-based approaches.  

 

Next, we apply this RAPSIDY procedure to evaluate the stability of each canonical morphology for the 

melts that regular MD simulations predict to form DM morphology (Fig. S14) at 90 ≤ χN ≤ 120. 

 

 

Fig. S16 Morphologies for melts of (a) A1B1A2B2A3 pentaBCPs and (b) B1A1B2A2B3 pentaBCPs. To achieve 

the above phase diagrams, we started with pentaBCP melts in the DM phase as predicted by unbiased MD 

(Fig. S14b and Fig. S14d) and using RAPSIDY tested to see if a stable ordered morphology formed; if an 

ordered morphology was formed, then we replace the DM symbol with that order morphology symbol in 

the phase diagram. The final “stable” phase diagrams are shown above.  

In Fig. S16 we present the complete set of equilibrium morphologies found for pentaBCPs melts using 

RAPSIDY and our unbiased MD simulations as described in the caption of the figure. While several chain 

designs remained DM at χN = 110 and even χN = 120 in all three trials of unbiased MD simulation, all but 

one formed an ordered morphology at χN = 110 and each was ordered at χN = 120 at the end of RAPSIDY. 

We note that several of melts which unbiased MD predicted to have the DM morphology, biased MD later 

identified DG to be the equilibrium.  

 

As we previously observed from the unbiased MD simulations of pentaBCP of sequence A1B1A2B2A3, fA= 

0.4, and τA2
 = 0.2 or 0.8, the C6 and DG morphologies are degenerate for many chain designs. We also 
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found some of the DM morphologies for these pentaBCP melts in unbiased MD to at least partially consist 

of perforated lamellae and the melts initialized as lamellae in RAPSIDY rapidly formed perforated lamellae. 

The perforated lamellae phase is known to be a stable or long-lasting metastable morphology in BCP melts, 

but it is also frequently a metastable precursor to a stable DG structure.5, 13-15  

 

 

Fig. S17 The fractions of the end A blocks, A1 and A3 (open red circle), the B blocks, B1 and B2 (filled blue 

squares), and the middle A block, A2 (filled black circles) in A domains, of A1B1A2B2A3 pentaBCPs with (a) 

fA
 = 0.33 and (b) fA = 0.4 (repeated from Fig. 5), and the fractions of the end B blocks, B1 and B3 (open blue 

squares), the A blocks A1 and A2 (filled red circles), and the middle B block, B2 (filled black squares) in A 

domains, of B1A1B2A2B3 pentaBCPs with (c) fA = 0.33 and (d) fA = 0.4, at several τA2
 from MD simulation 

at χN = 120. The plotted fraction and error bars represent the average and standard deviation of the 

computed fractions from each sampled frame from all three trials. 

 

 

Fig. S18 The fractions of (a) the end A blocks, A1 and A3, (b) the B blocks, B1 and B2, and (c) the middle A 

block, A2, in A domains, of A1B1A2B2A3 pentaBCPs with fA = 0.4 and several τA2
 from MD simulation at 
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χN = 120. The A and B domains are determined with the particle mesh Ewald (PME) method as well as 

with isosurfaces drawn with a Gaussian density mesh, and the fraction is found as the proportion of each 

block’s constituent beads in the A domain. The plotted fraction and error bars represent the average and 

standard deviation of the computed fractions from each sampled frame from all three trials. 

 

 

 

Fig. S19 The same isosurface snapshot and one- and two-dimensional volume fraction distributions as in 

Fig. 6 for the A1B1A2B2A3 pentaBCP melt with fA = 0.4 and τA2
= 0.5 at χN = 120. The one-dimensional 

distributions are sampled within a center-to-center interval (solid line segment with end marks) of a 

diagonal plane orthogonal to the lamellae (dashed line) and spatially averaged across the plane in the 

direction of the solid arrow. They are plotted against the distance r from the origin along the dashed arrow. 

The two-dimensional distributions are averaged along the solid arrow. The volume fraction distributions 

across the simulation volume are averaged between all sampled frames across three trials. 
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Fig. S20 Probability density histograms of the end-to-end distance Ree of A1B1A2B2A3 pentaBCP at χN = 

120 with fA = 0.4 and (a) τA2
 = 0.2, (b) τA2

 = 0.4, (c) τA2
= 0.5, (d) τA2

 = 0.6, and (e) τA2
 = 0.8. The 

histograms are divided at Ree  = 7d and 16d (black vertical line). The real-space distance (Lq*) 

corresponding to the major peak in SAA(q) sampled for each pentaBCP design from the second set of 

simulations is highlighted (gold vertical line).  
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