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Fig. S1 (Same as Figure 1 in the main manuscript) Schematics of (a) symmetric 4,B;4>B»A43 pentaBCP
and (b) symmetric B1A1B:A:Bs pentaBCP, where N, is degree of polymerization of y type block in the
polymer chain ((a) y = {4, B1, A>, B, A3}, and (b) y = {B1, A1, B2, A2, B3}), and the A and B monomers have
the same monomer volume. The polymer design parameters for each pentaBCP are defined below the
schematics. The f4 is the overall volume fraction of A blocks in the polymer chain, and t4, is the volume

fraction of the middle A> block to the total A blocks for the A;B,A2B:4s pentaBCPF, and tg, is the volume
fraction of the middle B> block to the total B blocks for the B1A1B>A>B3 pentaBCP.
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Fig. 82 Relative free energies per segment (free energies per chain of length N) to the homogeneous
disordered phase for the lamellae (L), double gyroid (DG), Fddd orthorhombic network (O”°), hexagonal-
packed cylinder (Cg), and body-centered cubic sphere (BCC) phases in the A;B1A2B2A;3 pentaBCP melts at

XN =40and 7,, =0.5.



Table S1 The end-to-end distance from MD RMP, SCFT unit cell parameter CECC FT the real-space length
Ly=equivalent to the q* peak of the A domain structure factor, and the MD unit cell parameter CuMcD. The
R%Dare sampled in the first simulation protocol at yN = 60 for each chain in the frames sampled from all
three trials of each chain design. The CSCC T are given for the morphology predicted by SCFT at yN = 60.
The Lg+ are sampled in the second simulation protocol at yN = 120 from all sampled frames across three
trials per chain design. The C%D, found as the quotient of L, and RQ&D, are provided for comparison with
ClslcCFT. RMP and CECC T are used to specify Lyc for the second simulation protocol, and Lg+ is used to
specify the simulation scale for the third simulation protocol. For both sampled quantities, the standard

deviation is given as the error.
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Fig. 83 (a) Snapshot (red beads for A and blue beads for B monomers), (b) A-B isosurface, (c) A-B radial
distribution function and (d) A domain structure factor Sa(q) of a melt of AiBiA:B:As pentaBCP chains
with fa = 0.4, ©4,= 0.5, simulated with YN = 0. The A-B radial distribution function and structure factor

are averaged across all sampled frames from three trials.

In Fig. S3 we present representative snapshots, the A-B radial distribution function and A domain structure
factor Saa(q) of a AiB1A,B>A3 pentaBCP melt simulated with unbiased MD simulations at yN = 0. Small A
and B domains appear in the chain snapshot (Fig. S3a) and the isosurface (Fig. S3b); such domains occur
due to random fluctuations in the distribution of each bead type as well as the proximity of similar beads
created by the chain connectivity. The radial distribution function of A-B contacts is shown in Fig. S3¢ in
for mixed melt of N = 50 pentaBCP chains. The height of the contact peak is 1.76 £ 0.06 with a 95%
confidence interval (that is, = two standard deviations). This value is used to distinguish disordered and
disordered-microphase separated structures as outlined in section IL.LE of the main text. The A domain
structure factor Saa(q) in Fig. S3d indicates the degree of microphase separation present even when no

thermodynamic incompatibility exists (y/N = 0) between beads of distinct types. The g values corresponding



to the bead diameter (Dycaq) and the box side length (Lvoxsize) are marked for comparison with the location

of peaks in Saa(q).
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Fig. S4 The same phase diagrams as those shown in Fig. 2 in the main manuscript for the 4,;B,4:B>A;
pentaBCPs, with phase boundaries (blue lines) overlaid on them. The phase boundaries were determined
with linear interpolation using the grid points with Afy = 0.0025 and curve-fitting the resolved points with

B-splines.
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Fig. S5 Same figure caption as Fig. S4 but for B1A1B>A,B3 pentaBCPs.
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Fig. 86 The spatial SCFT density distributions for the total A blocks (¢ M ¢ 4t ¢ 4y red lines) and the total

B blocks (¢31+ ¢BZ' blue lines) for the lamellar phases formed by the (a) ABA triBCP (z,,= 0.0), (b)
A1B1A4:B24;3 pentaBCPs (ty, = 0.4), and (c) BAB triBCP (4, = 1.0) at yN = 35 and f4 = 0.5, identified on

the phase diagram in Fig. 2a of the main manuscript. The lamellar periods are (a) L = 1.197b, (b) L =
0.715b, and (c) L = 1.197b.
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Fig. 87 The spatial SCFT density distributions for the total A blocks (¢ 4t ¢ .t ¢ 4y red line) and the total
B blocks (¢BJ+ ¢Bz’ blue line) for the lamellar phases formed by the A1B1A:B>A3 pentaBCPs at f1 = 0.5,

t4,= 0.4, and yN = 60, identified on the phase diagram in Fig. 2¢ of the main manuscript. The lamellar
period is L = 0.838b.
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Fig. S8 The same phase diagram shown in Fig. 2c in the main manuscript for the 4,B,4:B.A; pentaBCPs

at yN = 60, with the two vertical lines (f4 = 0.40 and f4 = 0.45) overlaid to highlight the reentrant phase

transitions.
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Fig. S9 The combined phase diagrams of the 4,B,A:B:A;3 pentaBCPs and the B1A1B,A;B3 pentaBCPs in the
Fig. 2 and Fig. 3 in the main manuscript, respectively, after redefining the A and B definitions in the

B1A1B,A:B3 penta

BCPs.
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SCFT Calculations for Fraction of Different Chain Conformations

The previous SCFT papers' present how to compute the fraction of looping and bridging configurations
of one block in block copolymers by solving partial partition functions with modified initial conditions
defined by Voronoi unit cells. The method requires construction of Voronoi cells within the morphology
and propagating the partial partition function (by solving the modified diffusion equation in SCFT) from
the initial condition corresponding to the one end of the interest block constrained to a specific VVoronoi
cell. However, computing the fraction of chain conformations in Fig. S10 requires propagating the partial
partition functions for the three consecutive blocks (i.e., second, third and fourth blocks in the pentaBCP)
with a series of different initial conditions, which are not independent as in the previous calculations.t 2
Here, instead of evaluating the three blocks, we used a simpler approach by considering only two equal
segments of the chain divided by the mid-point of the chain (the mid-point of the middle A block). Both
segments have one free end and one junction end, which are denoted by the three green dots in Fig. S10.
This approach reduces complexity in partial partition function calculations by categorizing the 6 distinct
conformations into four conformations (1. Looping-1 and Looping-2, 2. Hairpin, 3. Hybrid-1 and Hybrid-
2, and 4. Bridging), which allows use of independent initial conditions for the partial partition function
calculations. The detailed mathematical SCFT formalism is explained as follows. Here, we present the
fractions of the ABABA pentaBCP conformations in the L morphology calculated by the SCFT partial

partition functions.

11
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Fig. S10 Schematics of possible A4;B;A.B>A; pentaBCP conformations in the lamellar morphology with the

three Voronoi unit cells V;, V>, and V.

The first step is to determine the VVoronoi unit cells in the SCFT morphology, which is straightforward in
L morphology. Fig. S10 illustrates the three Voronoi unit cells (Vi, V2, and V3) by which the initial
conditions of the partial partition functions corresponding to the two segments will be determined as follows.

The initial condition of partial partition function g, (r, s) with the first free end (s = 0) constrained to the

nth unit cell is defined as

1, if r € nth Voronoi cell
0, otherwise

7,(r.0)= | (1)
Similarly, the initial condition of the conjugate partial partition function qz (r,s) with the last free end (s

= N) constrained to the nth unit cell is defined as

1, if r € nth Voronoi cell
0, otherwise

CHCOVRY @
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With precalculated converged mean field solutions w, and wg, the two partial partition functions are

evaluated by solving the modified eqns (1) and (2) in the manuscript.

Since the modified partial partition functions g, (r, s) and Z]Z(r, s) are not periodic, the large simulation
cell sizes, which are 8 times the lamellar unit cell sizes, are adopted to remove the finite size effect arising
from periodic boundary condition. We confirmed the simulation cell size is large enough with negligible
errors in the fraction calculations. We also justified the simulation sizes by confirming that the distribution
of the partial partition functions propagated from the initial condition constrained in a Voronoi unit cell

remains away from the simulation boundaries (» = 0 and » = L) as shown in Fig. S11.
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Fig. S11 The SCFT partial partition functions calculated for the fractions of different chain conformations
in Fig. S10. The blue and red solid lines are the initial conditions for the partial partition functions
constrained to the Voronoi unit cells V, and Vs, respectively. The blue and red dashed lines are the
distributions of propagated partial partition functions, which are rescaled in q values to present in the same

plot.
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Once the partial partition functions are computed, the probability of both free ends and middle point of the

chain being in the same Voronoi unit cell (/>) is obtained by

oG [ e s =V a0 5= ) ©
where Q is the total partition function explained in section II.B. of the manuscript and Ve are the Voronoi
unit cell volume. Since the systems we calculated are in strongly segregated regime (yN = 60) where most
A and B blocks reside in their respective domains, the probability in eqn (3) represents the fraction of
looping conformations where both free ends and middle point of chain are in the same Voronoi unit cell

(Looping-1 and Looping-2 in Fig. S10).

In the same way, the fraction of hairpin conformation where the middle point and the end points are in

different Voronoi unit cell is calculated as follows,

1

Vhaimpin™ 7377 f drg,(r,s = NI2) Gl (r, s = N/2)
OV el ¥ cell

; U g (rs= NG (e s = NI2) 4
QVCCH sz cell q3 q3 ( )

Due to the symmetry in the converged mean field solutions w, and wg, the computation of the first and

the second terms in eqn (4) give the same value.

The fraction of hybrid chain conformations (Hybrid-1 and Hybrid-2), where one free end and middle point

are in the same Voronoi unit cell and the other end is in the other Voronoi unit cell, is calculated as follows,

1 f ;
Verheid] 9 = —— dr q,(r, s = N/2) g.(r,s = N/2)
Hibrid1,2 QVcell , cell 2 3

—+

C drga(r, s = N2 (r, s = N12)
QVcell -[Vz cell 3 2

+

f dr g, (r, s = N2)g\(r, s = NI2)
QVCGH V5 cell

14



+ © drg,(rs=N2)g (r, s = N2) 5)
QVcell f V5 cell ? g (

The symmetry in the mean field solutions and in the pentaBCP architecture makes all terms in the right-

hand side of eqn (5) have the same value.

Lastly, the fraction of the bridging conformation where all three points are in the different Voronoi unit cells

is calculated as follows,

— = — —f —
VBridei __f drgq,(r,s=N/2)q.(r,s=N/2)
Bridging QVcell V, cell : ’

+ f U drg.(r.s=NR)G (r.s = N2) 6)
Ve Jyy cen > :
Again, the symmetry in the pentablock copolymer architecture makes the values of first and the second
term in eqn (6) same. Fig. S12, presents the computed fractions for each conformation at different 74,
values for ABABA pentaBCP at fy = 0.4 and yN = 60. The equilibrium phases at each 7,,in SCFT are L
(ta,= 0.4), L (o, = 0.5), and DG (za,= 0.6), but we present the fractions calculated in L phase for the
comparison with MD simulation results in Fig. 7 of the main manuscript. Assuming that both loop and
hairpin conformations give low R.. values, the hybrid conformations give intermediate R.. values, and
bridging conformations give the highest R.. value, the SCFT fraction data can be directly compared with

the proportion of each population obtained by MD simulation in Fig. 7.
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Fig. S12 Percentage bar charts for the fractions of different chain conformations (obtained from SCFT
approach) described in Fig. S10. The fractions of the A;B;A:B2A3 pentaBCP conformations in the L
morphology are calculated for t4,= 0.4, 0.5, and 0.6 at f4 = 0.4 and yN = 60.

The SCFT calculations results (Fig. S12) give qualitative agreement with the MD simulation data (Fig. 7d-
7f); the fractions of high end-to-end distance R.. conformation (bridging) are always the smallest, and the
fractions of the medium R.. conformation (hybrids) are always the largest. However, there are some
differences between SCFT and MD simulation results; in SCFT the fractions of the low R.. conformations
(loops and hairpins) and the fractions of the medium R.. conformations (hybrids) are similar with ~ 40 —
50% while in the MD simulations there are large differences between low R.. fractions (ranging from 27 —
30%) and the medium R.. fractions (~ 63%). For the low R.. conformations in Fig. S12, the hairpin
conformation fractions are ~10% and the looping conformations are the majority conformations with ~30%,
which supports our assumption in Fig. 7 that the low R.. populations mostly consist of chains with the
looping conformations. In addition, the small fractions of high R.. conformation (bridging) in Fig. S12
support the assumption in the hypothesized conformations in Fig. 4f-1 of the main manuscript that the

possibility of chain conformations with two B blocks bridging can be neglected.
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Medium R, Medium R, Medium R, Medium R,

High R,, High R,,

Fig. S13 Examples of a few of the possible 4;B,4.B:43pentaBCP conformations in the Cs morphology (top

view) within the 7 Voronoi unit cells.

Fig. S13 illustrates a small part of an exhaustive list of chain conformations defined by different VVoronoi
unit cells in the Cs morphology. Depending on which Voronoi unit cell the chain ends reside, the chain
conformations have different R.. from low to high. Even though some chain conformations in Fig. S13 have
the same probability due to the rotational symmetry in the Cs morphology, evaluating the chain
conformations in SCFT requires enumerating all possible initial conditions belonging to the different
Voronoi unit cells, which becomes complicated with complex chain architecture or the number of VVoronoi

unit cell initial conditions increases as in the Cs morphology versus L morphology.

In contrast to the above complexities in SCFT calculations, MD simulations provide a straightforward way
to evaluate the population of chain conformations by analyzing the distribution of chains from low to high

Ree. As shown in Fig. 7 of the main manuscript, the distribution of Re. can be extracted directly from

17



sampling the chains in MD simulations while SCFT requires separate calculation for each chain

conformation.
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Fig. S14 Comparison of morphologies predicted by (a) SCFT and (b) MD simulation for A;B14:B:4;3
pentaBCPs and by (c) SCFT and (d) MD simulation for B1A1B:A>B3 pentaBCPs. Chain designs are chosen
to closely match the f4, t,, and tp, values on the phase diagram from SCF'T. The legend on top of the plot
connects the symbols to the morphologies. The schematic representation of each ordered morphology can
be found in Table 1 of the main paper. We note again that the “disordered microphase” (DM) occurs when
the height of the contact peak of the A-B radial distribution function of a given melt is <1.76 + 0.06 without

the formation of an ordered morphology.

The morphologies found to be the energy minimum in SCFT at yN = 35, 40, and 60 for chains with fA =
0.33 and 0.4 and 74 oy, from 0.2 to 0.8 are shown in the left column in Fig. S14. The morphologies
observed in MD simulations at yN = 90, 100, 110, and 120 for chains with fa ~ 0.33 and 0.4 and 74 o/, ~
0.2, 0.4, 0.5, 0.6, and 0.8 are displayed on the right column in Fig. S14. The SCFT calculations predict
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ordered morphologies at yN = 60, while for MD simulations ordered morphologies only show up at higher
xN. This discrepancy in the ODT in SCFT vs. MD simulation is well-documented in the literature and is
attributed to the density fluctuations which are present in the particle-based simulations but absent in the
SCFT calculations.*® These fluctuations have the effect of increasing (N)opr as well as increasing the
thermodynamic favorability of high curvature phases like DG near the ODT.* 7 Mostly, there is good
correspondence between the sequence of morphologies observed with SCFT calculations and MD
simulations with increasing 7 or g, for the highest yN for each method (yN = 60 for SCFT and yN = 120
for MD simulation). We will discuss the comparison of results from SCFT and MD simulations in detail

next.

For A{B1A;B;A; pentaBCPs at y/N = 60 with fy ~ 0.33, SCFT (Fig. S14a) predicts the Cs phase to be

formed at all values of 7, ; in contrast, in MD simulations (Fig. S14b), only two of the five simulated
designs with the same sequence and fs formed ordered morphologies at yN = 120 and that ordered

morphology is Ce.

For A1B1A;B;A; pentaBCPs at yNV = 60 with fy ~ 0.4 as 7,, is increased from 0.2 to 0.8 SCFT (Fig.

S14a) predicts morphologies C¢ — L— DG — Cs. With MD simulations (Fig. S14b) we see a similar

reentrant sequence DG — L — Cs at yN = 120. We note that within the three trials of MD simulations 74,

= 0.2 and 0.8, we observed both Cs and DG. We use additional tests as described to conclude that these

morphologies are similar in free energy for these designs.

For the B;A1B2A;B; pentaBCPs at yN = 60 with fi ~ 0.33, SCFT (Fig. S14c¢) predicts the sequence L —
Cs — DG — L, while MD simulations (Fig. S14d) predict the sequence L — DM — L at yN = 120.

For the B;A;B:A;B; pentaBCPs at yN = 60 with fa ~ 0.4, both SCFT (Fig. S14¢) and MD simulations
(Fig. S14d) predict the L morphology at all values of 75, that we studied.

We note that for systems with fa ~ 0.4, both pentaBCP sequences were fully ordered at yN =120 and ordered
at lower yNN than the pentaBCPs with f5 ~ 0.33, in accordance with the trends in the SCFT data, despite the

discrepancy between both methods in the yN required for ordering.
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When multiple trials of a regular MD simulations show possibility of different morphologies (e.g.,
occurrences of Cs and DG) or if there is a clear disagreement in the ordered morphology between SCFT
and MD simulations, we use our newly developed high-throughput computational framework RAPSIDY -
Rapid Analysis of Polymer Structure and Inverse Design strategY - described next.

Rapid Analysis of Polymer Structure and Inverse Design strategY (RAPSIDY)

The RAPSIDY procedure allows us to initialize MD simulations using configurations where chains with a
specific polymer design are pre-placed within canonical morphologies to directly evaluate stability of a
particular phase (e.g., double gyroid) for that polymer design without having to use slow, global
optimization procedures such as simulated annealing used in traditional MD. Our methodology allows us
to rapidly screen the stability of canonical phases (e.g., lamellar, double gyroid, hexagonal-packed cylinders)
or non-canonical phases (e.g., user defined morphologies) with a two orders of magnitude acceleration in
computation time compared to traditional MD. We also apply this accelerated stability analysis to address
the long-standing problem of incommensurability, which distorts the self-assembled structure in BCP melts
and is challenging to prevent. In the following section, we briefly summarize the initialization process but

encourage readers to refer to our separate publication for details.’

Chains within a random melt are biased into conformations that form a desired morphology using an
external potential, Vex, defined by a known, reference density field, ™. The reference density field is a
discretized 3D function, ¢™f = ¢™' (x, y, z), which defines the number density of each species at each mesh
point. This guiding field is inspired by previous work of Nowak and Escobedo, ' Miiller and Daoulas'! and

Lequieu '? who have used similar forms.
M
_ refy2
Veu=A ) (0,97 ™
i

Here, ¢, and go?ef refer to the density of the simulation and reference field, respectively, at mesh point i,

M is the total number of mesh points, and A4 is a user-defined scaling constant. When the simulation density
is far away from the target morphological density field, the system potential energy is heavily penalized,
but as the system approaches the target morphological density, then the field tends to 0. The scaling constant,
A, is chosen such that the forces exerted on the beads are comparable in magnitude to the forces exerted by
the existing bonded and non-bonded interactions for numerical stability. In our case, we found 4 = 100 to

be a reasonable tradeoff between numerical stability and equilibration speed. During this initialization
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process, we also modify the non-bonded Lennard Jones (LJ) potential of the system by capping to maximum
pairwise energy to the value obtained at 0.84. This modified non-bonded potential allows beads and chains
to overlap which in turn significantly accelerates the initialization process by allowing chain movements
that are unphysical with a traditional LJ potential. The combination of the external guiding potential coupled
with force-capped LJ potential allows all chains to settle within their desired morphologies within ~10?
timesteps. After chains settled within their desired morphologies, the external potential and force-capping
is turned off to allow the system and the chains to naturally evolve to their (global) free energy minima. We
compare the scattering profiles of the morphology at the beginning and end of equilibration to determine if
the biased morphology was retained. Reference density fields for the canonical phases tested (L, C¢, and
DGQG) are defined from their mathematical structure and their respective derivations can be found in our

corresponding publication.’

RAPSIDY also addresses one of the long-standing challenges associated with conducting periodic MD
simulations of block copolymers where the box size needs to be an integer multiple of the periodicity of the
stable morphology which is not known a priori. Our future publication presenting RAPSIDY will discuss
the various applications of this approach. Here, we present one example application of RAPSIDY to
determine the equilibrium morphology of a given chain design and thereby resolve the discrepancy between
predictions from SCFT calculations and MD simulations or variability in morphology predictions from

multiple trials of the same system.
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(a) Lamellar

(MD predicted)

t=0t t = 50001 t = 10,0001

(b) Double gyroid
(SCFT Predicted)

t=0t1 t = 50001 t = 10,000t
Fig. 815 Snapshots of (a) lamellae (L) and (b) double gyroid (DG) trajectories initialized using biased MD

Jor AiB1A>B>4;3 pentaBCP with f4= 0.4 and t,, = 0.6 at yN =120 (red denotes A and blue denotes B). The

system initialized as a L structure (as predicted by MD simulations) rapidly equilibrates and remains in the
initial morphology after 10,000t. However, when the system is initialized as DG (as predicted from SCFT),
the system transitions towards a L morphology with identical domain spacing (~10d) to that obtained from
(a) and from traditional (unbiased) MD. This confirms that with particle-based simulations for this design,
the L morphology is more stable than DG morphology.

For A1B1A;B2A; pentaBCP with fa= 0.4 and t,, = 0.6, the SCFT prediction and MD simulation prediction
at the highest yN values do not agree; SCFT predicts DG while MD simulation predicts L. In Fig. S15 we
show simulation snapshots over the course of 10,0007 with RAPSIDY method starting with L and DG
morphologies for polymer design fa= 0.4 and 75, = 0.6 at a high segregation strength of yN = 120. The
system initiated as a L structure rapidly equilibrates and remains within the initial prescribed morphology
after 5,000t and 10,000z. However, the system initiated as DG quickly transitions away from DG (after
5,0007) towards an L morphology (after 10,0007) with identical domain spacing (~104d) to that obtained by
the previous biased initiation and traditional MD. The above observations are consistent over three trials
and shows that DG is not stable (or L is more stable than DG) even at a high segregation strength of yN =
120. The L morphology is also stable at lower segregation strengths, including yN = 90, 100, and 110. For
all other sequence designs (fa= 0.4, 75, =0.2,0.4, 0.5, 0.8) at yN = 120, we found that the morphologies

predicted by SCFT and MD were stable over 10,0007 after biased initialization; this includes both the Cs
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and DG morphologies predicted by SCFT and MD, respectively, for the pentaBCP with 75, = 0.2. Our

rapid initialization procedure suggests that discrepancies between SCFT and traditional MD predicted
phases are likely not due to kinetic trapping by our annealing protocol but rather by fundamental differences

between particle-based and mean-field-based approaches.

Next, we apply this RAPSIDY procedure to evaluate the stability of each canonical morphology for the
melts that regular MD simulations predict to form DM morphology (Fig. S14) at 90 < yN < 120.
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Fig. 8§16 Morphologies for melts of (a) A1B1A>B»A43 pentaBCPs and (b) B1A:1B24:B3pentaBCPs. To achieve
the above phase diagrams, we started with pentaBCP melts in the DM phase as predicted by unbiased MD
(Fig. S14b and Fig. S14d) and using RAPSIDY tested to see if a stable ordered morphology formed; if an
ordered morphology was formed, then we replace the DM symbol with that order morphology symbol in

the phase diagram. The final “stable” phase diagrams are shown above.

In Fig. S16 we present the complete set of equilibrium morphologies found for pentaBCPs melts using
RAPSIDY and our unbiased MD simulations as described in the caption of the figure. While several chain
designs remained DM at yN = 110 and even yN = 120 in all three trials of unbiased MD simulation, all but
one formed an ordered morphology at yN = 110 and each was ordered at yN = 120 at the end of RAPSIDY.
We note that several of melts which unbiased MD predicted to have the DM morphology, biased MD later
identified DG to be the equilibrium.

As we previously observed from the unbiased MD simulations of pentaBCP of sequence AiB1A2B2A3, fa=
0.4, and 7o, = 0.2 or 0.8, the Cs and DG morphologies are degenerate for many chain designs. We also

23



found some of the DM morphologies for these pentaBCP melts in unbiased MD to at least partially consist
of perforated lamellae and the melts initialized as lamellae in RAPSIDY rapidly formed perforated lamellae.

The perforated lamellae phase is known to be a stable or long-lasting metastable morphology in BCP melts,

but it is also frequently a metastable precursor to a stable DG structure.™ 11
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Fig. S17 The fractions of the end A blocks, A; and A3 (open red circle), the B blocks, B; and B; (filled blue
squares), and the middle A block, A; (filled black circles) in A domains, of Ai1B1A:B2:43 pentaBCPs with (a)
f1=0.33 and (b) f1 = 0.4 (vepeated from Fig. 5), and the fractions of the end B blocks, B; and B3 (open blue
squares), the A blocks A; and A; (filled red circles), and the middle B block, B: (filled black squares) in A
domains, of BiA1B:4:B3 pentaBCPs with (c) f4= 0.33 and (d) f1= 0.4, at several t,, from MD simulation

at xN = 120. The plotted fraction and error bars represent the average and standard deviation of the

computed fractions from each sampled frame from all three trials.
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Fig. S18 The fractions of (a) the end A blocks, A;and A3, (b) the B blocks, B; and B, and (c) the middle A
block, A>, in A domains, of AiB14:B:A;s pentaBCPs with fi = 0.4 and several v, from MD simulation at
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N = 120. The A and B domains are determined with the particle mesh Ewald (PME) method as well as
with isosurfaces drawn with a Gaussian density mesh, and the fraction is found as the proportion of each
block'’s constituent beads in the A domain. The plotted fraction and error bars represent the average and

standard deviation of the computed fractions from each sampled frame from all three trials.

SCFT Distributions C. MD Distributions
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Fig. 819 The same isosurface snapshot and one- and two-dimensional volume fraction distributions as in
Fig. 6 for the A;B,A>B>4; pentaBCP melt with f4 = 0.4 and t,,= 0.5 at YN = 120. The one-dimensional
distributions are sampled within a center-to-center interval (solid line segment with end marks) of a
diagonal plane orthogonal to the lamellae (dashed line) and spatially averaged across the plane in the
direction of the solid arrow. They are plotted against the distance r from the origin along the dashed arrow.
The two-dimensional distributions are averaged along the solid arrow. The volume fraction distributions

across the simulation volume are averaged between all sampled frames across three trials.
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Fig. 8§20 Probability density histograms of the end-to-end distance R,, of AiB1A>B:A3 pentaBCP at yN =
120 with f4 = 0.4 and (a) ©,, = 0.2, (b) 74, = 0.4, (c) 74,= 0.5, (d) 4, = 0.6, and (e) 4, = 0.8. The
histograms are divided at R,, = 7d and 16d (black vertical line). The real-space distance (Lg%

corresponding to the major peak in Siu(q) sampled for each pentaBCP design from the second set of
simulations is highlighted (gold vertical line).
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