Supplementary Information

Memory Effect and Coexistence of Negative and Positive Photoconductivity in Black Phosphorus Field Effect Transistor for Neuromorphic Vision Sensors

Arun Kumar1,*, Kimberly Intonti1,2, Loredana Viscardi1,2, Ofelia Durante1,2, Aniello Pelella3, Osamah Kharsah4, Stephan Sleziona1, Filippo Giubileo2, Nadia Martucciello2, Paolo Ciambelli5, Marika Schleberger4, and Antonio Di Bartolomeo1,2,*

1Department of Physics ‘E.R. Caianiello’, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy

2CNR-SPIN Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy

3Department of Science and Technology, University of Sannio, Via de Sanctis, Benevento 82100, Italy

4Fakultät für Physik and CENIDE, Universität Duisburg-Essen, Lotharstrasse 1, Duisburg D-47057, Germany

5Narrando Srl, Via Arcangelo Rotunno 43, Salerno 84134, Italy

*Corresponding Authors: akumar@unisa.it, adibartolomeo@unisa.it
Figure S1 (a) depicts the transistor current throughout a sequence of pulses applied to the gate ($V_{\text{gs}} = \pm 20 \text{ V}$) at pressure of 2 mbar. Similarly, Figure S1 (b) shows the transistor current after $V_{\text{gs}} = \pm 20 \text{ V}$ pulses, at the lower pressure of 10^{-5} mbar. The transient memory response of the device is compared across various temperatures, at fixed $V_{\text{ds}} = 100 \text{ mV}$ and at the pressures of 2 mbar and 10^{-5} mbar, respectively.

![Figure S1](image)

Figure S1. (a) SET/RESET/READ cycles at different temperatures and under 2 mbar pressure; (b) SET/RESET/READ cycles at different temperatures and under 10^{-5} mbar pressure.

In Figure S2 it is shown the slow decay of the transistor current after illumination (persistency). The current returns to the pristine dark level in a time exceeding 8000 s.

![Figure S2](image)

Figure S2. Transient photocurrent measurement with a decay recorded up to 8000 s. The inset shows the same plot with the time on logarithmic scale.